Willamette River Basin Reservoir System Operation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Willamette River Basin Reservoir System Operation PDF full book. Access full book title Willamette River Basin Reservoir System Operation.

Willamette River Basin Reservoir System Operation

Willamette River Basin Reservoir System Operation
Author: United States. Army. Corps of Engineers. Portland District
Publisher:
Total Pages: 113
Release: 1989
Genre: Water resources development
ISBN:

Download Willamette River Basin Reservoir System Operation Book in PDF, ePub and Kindle


Reservoir-system Model for the Willamette River Basin, Oregon

Reservoir-system Model for the Willamette River Basin, Oregon
Author: James O. Shearman
Publisher:
Total Pages: 32
Release: 1976
Genre: Geology
ISBN:

Download Reservoir-system Model for the Willamette River Basin, Oregon Book in PDF, ePub and Kindle

For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor.


Optimizing Reservoir Operations to Adapt to 21st Century Expectations of Climate and Social Change in the Willamette River Basin, Oregon

Optimizing Reservoir Operations to Adapt to 21st Century Expectations of Climate and Social Change in the Willamette River Basin, Oregon
Author: Kathleen M. Moore
Publisher:
Total Pages: 183
Release: 2015
Genre: Cities and towns
ISBN:

Download Optimizing Reservoir Operations to Adapt to 21st Century Expectations of Climate and Social Change in the Willamette River Basin, Oregon Book in PDF, ePub and Kindle

Reservoir systems in the western US are managed to serve two main competing purposes: to reduce flooding during the winter and spring, and to provide water supply for multiple uses during the summer. Because the storage capacity of a reservoir cannot be used for both flood damage reduction and water storage at the same time, these two uses are traded off as the reservoir fills during the transition from the wet to the dry season. Climate change, population growth, and development in the western US may exacerbate dry season water scarcity and increase winter flood risk, creating a need to critically evaluate the status quo for reservoir operations. Focusing on a system of thirteen reservoirs (the Willamette Project) in the Willamette River Basin, Oregon, we estimated the values of reservoir management for reducing expected damages in the floodplain and for storing water for recreation in and around the reservoirs. We then used these values in a dynamic program to estimate the optimal fill path over the winter-spring transition period for both historical conditions and future scenarios of climate and social change. The value of stored water for summertime reservoir recreation was estimated based on the response of recreational use day counts to variation in water levels at nine of the reservoirs over the period 2001 to 2011. Visitor days were found to decline by as much as 2% per foot of drop in water level below full pool. The implied value of water to recreational users varied from $0.10 to $78 per acre-foot per month, depending on the reservoir. This range of values is comparable to prior estimates of the value of reservoir recreation in other parts of the western US, and is also similar to the value of water to irrigated agriculture in the Willamette River Basin, estimated in other studies. Because water cannot be used for recreation and irrigation at the same time, these results suggest that management of the Willamette reservoirs may benefit society by releasing stored water in summer for downstream needs from some reservoirs, while maintaining full pool for recreation in others, as prescribed currently. The expected value of flood damage reduction was estimated based on the probability of floods, flood inundation depth, and reservoir capacity, for three scenarios of future development in the Willamette River Basin, which were simulated by the Willamette Water 2100 land transition model over the period from present to 2100 using mid-range projections of future climate (MIROC5) and assumptions about future population growth. Estimates of expected flood damage reduction varied as a function of flood risk over the course of the winter and spring, as well as the rate of population growth and associated development in the floodplain. At a weekly time scale the expected benefits of flood damage reduction ranged from a high in mid-January of $304 million to $1,284 million (depending on the rate of population growth), to near zero at the end of May. Finally, these analyses were combined in a dynamic programming approach to evaluate the optimal rate of fill for the Willamette Project reservoirs, at a weekly time step over the period from January to the end of May. This was done by treating the system of thirteen reservoirs as a single reservoir. The dynamic program found the fill path that minimized the sum of flood damages and foregone recreation benefits, subject to the constraint of available water inflows to the reservoir system. The estimated optimal fill path depended on the rate of decline of expected flood damages from mid-January to May. Anticipated future increases in winter flood risk and reduced spring streamflow, associated with climate change, shifted the optimal fill path to begin earlier and to fill more slowly, compared to the optimal fill path under historical conditions. The model confirms the intuitive result that the greater the value of stored water the earlier the optimal date to begin filling. Conversely, the greater the expected value of flood damage reduction the later the initiation of fill. Despite uncertainties in the estimated values of expected flood damage reduction and stored water for recreation, as well as the limitations of the dynamic program in modelling the coordinated management of multiple reservoirs, the approach and findings of this analysis contribute to our understanding of how reservoir management may need to adapt to future changes in water supply and demand.