Waves In Periodic And Random Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Waves In Periodic And Random Media PDF full book. Access full book title Waves In Periodic And Random Media.

Waves in Periodic and Random Media

Waves in Periodic and Random Media
Author: Peter Kuchment
Publisher: American Mathematical Soc.
Total Pages: 232
Release: 2003
Genre: Mathematics
ISBN: 0821832867

Download Waves in Periodic and Random Media Book in PDF, ePub and Kindle

Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.


Wave Propagation and Scattering in Random Media

Wave Propagation and Scattering in Random Media
Author: Akira Ishimaru
Publisher: Elsevier
Total Pages: 272
Release: 2013-06-11
Genre: Science
ISBN: 0323158323

Download Wave Propagation and Scattering in Random Media Book in PDF, ePub and Kindle

Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner, as well as useful approximation techniques applicable to a variety of different situations. The emphasis is on single scattering theory and transport theory. The reader is introduced to the fundamental concepts and useful results of the statistical wave propagation theory. This volume is comprised of 13 chapters, organized around three themes: waves in random scatterers, waves in random continua, and rough surface scattering. The first part deals with the scattering and propagation of waves in a tenuous distribution of scatterers, using the single scattering theory and its slight extension to explain the fundamentals of wave fluctuations in random media without undue mathematical complexities. Many practical problems of wave propagation and scattering in the atmosphere, oceans, and other random media are discussed. The second part examines transport theory, also known as the theory of radiative transfer, and includes chapters on wave propagation in random particles, isotropic scattering, and the plane-parallel problem. This monograph is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media.


Wave Propagation in Random Media

Wave Propagation in Random Media
Author: Joseph Bishop Keller
Publisher:
Total Pages: 46
Release: 1960
Genre: Random dynamical systems
ISBN:

Download Wave Propagation in Random Media Book in PDF, ePub and Kindle


Diffuse Waves in Complex Media

Diffuse Waves in Complex Media
Author: Jean-Pierre Fouque
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2012-12-06
Genre: Science
ISBN: 9401145725

Download Diffuse Waves in Complex Media Book in PDF, ePub and Kindle

The NATO Advanced Study Institute on Diffuse Waves in Complex Media was held at the "Centre de Physique des Houches" in France from March 17 to 27, 1998. The Schools' scientific content, wave propagation in heterogeneous me dia, has covered many areas of fundamental and applied research. On the one hand, the understanding of wave propagation has considerably improved during the last thirty years. New developments and concepts such as, speckle correlations, weak and strong localization, time reversal, near-field propagation are under active research. On the other hand, wave propagation in random media is now being investigated in many different fields such as applied mathematics, acoustics, optics, atomic physics, geo physics or medical sciences. Each community often uses its own langage to describe the same phenomena. The aim of the School was to gather worldwide specialists to illuminate various aspects of wave propagation in random media. This volume presents fourteen expository articles corresponding to courses and seminars given during the School. They are arranged as follows. The first three articles deal with the phenomena of localization of waves: B. van Tiggelen (p. 1) gives a critical review of the physics of localization, J. Lacroix (p. 61) presents the mathematical theory and A. Klein (p. 73) describes recent results for randomized periodic media.


Wave Propagation in Random Media

Wave Propagation in Random Media
Author: Uriel Frisch
Publisher:
Total Pages:
Release: 1965
Genre:
ISBN:

Download Wave Propagation in Random Media Book in PDF, ePub and Kindle

A theory of multiple scattering of waves by a continuous random medium is developed. An exact solution of the scalar wave equation with random index is given by means of a functional space integration. Perturbation expansions and serveral approximation methods are studied. New results are given, some of which disagree with previous ones. Coupling between different wave modes and subsequent energy transfer are also considered.


An Introduction to Fronts in Random Media

An Introduction to Fronts in Random Media
Author: Jack Xin
Publisher: Springer Science & Business Media
Total Pages: 165
Release: 2009-06-17
Genre: Mathematics
ISBN: 0387876839

Download An Introduction to Fronts in Random Media Book in PDF, ePub and Kindle

This book aims to give a user friendly tutorial of an interdisciplinary research topic (fronts or interfaces in random media) to senior undergraduates and beginning grad uate students with basic knowledge of partial differential equations (PDE) and prob ability. The approach taken is semiformal, using elementary methods to introduce ideas and motivate results as much as possible, then outlining how to pursue rigor ous theorems, with details to be found in the references section. Since the topic concerns both differential equations and probability, and proba bility is traditionally a quite technical subject with a heavy measure theoretic com ponent, the book strives to develop a simplistic approach so that students can grasp the essentials of fronts and random media and their applications in a self contained tutorial. The book introduces three fundamental PDEs (the Burgers equation, Hamilton– Jacobi equations, and reaction–diffusion equations), analysis of their formulas and front solutions, and related stochastic processes. It builds up tools gradually, so that students are brought to the frontiers of research at a steady pace. A moderate number of exercises are provided to consolidate the concepts and ideas. The main methods are representation formulas of solutions, Laplace meth ods, homogenization, ergodic theory, central limit theorems, large deviation princi ples, variational principles, maximum principles, and Harnack inequalities, among others. These methods are normally covered in separate books on either differential equations or probability. It is my hope that this tutorial will help to illustrate how to combine these tools in solving concrete problems.


Caught by Disorder

Caught by Disorder
Author: Peter Stollmann
Publisher: Springer Science & Business Media
Total Pages: 177
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461201691

Download Caught by Disorder Book in PDF, ePub and Kindle

Disorder is one of the predominant topics in science today. The present text is devoted to the mathematical studyofsome particular cases ofdisordered systems. It deals with waves in disordered media. To understand the significance of the influence of disorder, let us start by describing the propagation of waves in a sufficiently ordered or regular environment. That they do in fact propagate is a basic experience that is verified by our senses; we hear sound (acoustic waves) see (electromagnetic waves) and use the fact that electromagnetic waves travel long distances in many aspects ofour daily lives. The discovery that disorder can suppress the transport properties of a medium is oneof the fundamental findings of physics. In its most prominent practical application, the semiconductor, it has revolutionized the technical progress in the past century. A lot of what we see in the world today depends on that relatively young device. The basic phenomenon of wave propagation in disordered media is called a metal-insulator transition: a disordered medium can exhibit good transport prop erties for waves ofrelatively high energy (like a metal) and suppress the propaga tion of waves of low energy (like an insulator). Here we are actually talking about quantum mechanical wave functions that are used to describe electronic transport properties. To give an initial idea of why such a phenomenon could occur, we have to recall that in physical theories waves are represented by solutions to certain partial differential equations. These equations link time derivatives to spatial derivatives.


Wave Propagation and Time Reversal in Randomly Layered Media

Wave Propagation and Time Reversal in Randomly Layered Media
Author: Jean-Pierre Fouque
Publisher: Springer Science & Business Media
Total Pages: 623
Release: 2007-06-30
Genre: Science
ISBN: 0387498087

Download Wave Propagation and Time Reversal in Randomly Layered Media Book in PDF, ePub and Kindle

The content of this book is multidisciplinary by nature. It uses mathematical tools from the theories of probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time reversal experiments. It is addressed to a wide audience of graduate students and researchers interested in the intriguing phenomena related to waves propagating in random media. At the end of each chapter there is a section of notes where the authors give references and additional comments on the various results presented in the chapter.


Wave Propagation in Complex Media

Wave Propagation in Complex Media
Author: George Papanicolaou
Publisher: Springer Science & Business Media
Total Pages: 301
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461216788

Download Wave Propagation in Complex Media Book in PDF, ePub and Kindle

This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.