Visual Navigation For Dynamic Quadruped Robots PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Visual Navigation For Dynamic Quadruped Robots PDF full book. Access full book title Visual Navigation For Dynamic Quadruped Robots.

Visual Navigation for Dynamic Quadruped Robots

Visual Navigation for Dynamic Quadruped Robots
Author: Daniel A. Carballo
Publisher:
Total Pages: 55
Release: 2020
Genre:
ISBN:

Download Visual Navigation for Dynamic Quadruped Robots Book in PDF, ePub and Kindle

Legged robots have been highlighted as promising mobile platforms for disaster response and rescue scenarios because of their rough terrain locomotion capability. In cluttered environments, small robots are desirable as they can maneuver through small gaps, narrow paths, or tunnels. However small robots have their own set of difficulties such as limited space for sensors, limited obstacle clearance, and scaled-down walking speed. In this paper, we extensively address these difficulties via effective sensor integration and exploitation of dynamic locomotion and jumping. We integrate two Intel RealSense sensors into the MIT Mini-Cheetah, a 0.3 m tall, 9 kg quadruped robot. Simple and effective filtering and evaluation algorithms are used for foothold adjustment and obstacle avoidance. We showcase the exploration of highly irregular terrain using dynamic trotting and jumping with the small-scale, fully sensorized Mini-Cheetah quadruped robot.


Mobile Robots Navigation

Mobile Robots Navigation
Author: Luis Payá
Publisher: MDPI
Total Pages: 298
Release: 2020-11-13
Genre: Technology & Engineering
ISBN: 3039286706

Download Mobile Robots Navigation Book in PDF, ePub and Kindle

The presence of mobile robots in diverse scenarios is considerably increasing to perform a variety of tasks. Among them, many developments have occurred in the fields of ground, underwater, and flying robotics. Independent of the environment where they move, navigation is a fundamental ability of mobile robots so that they can autonomously complete high-level tasks. This problem can be efficiently addressed through the following actions: First, it is necessary to perceive the environment in which the robot has to move, and extract some relevant information (mapping problem). Second, the robot must be able to estimate its position and orientation within this environment (localization problem). With this information, a trajectory toward the target points must be planned (path planning), and the vehicle must be reactively guided along this trajectory considering either possible changes or interactions with the environment or with the user (control). Given this information, this book introduces current frameworks in these fields (mapping, localization, path planning, and control) and, in general, approaches to any problem related to the navigation of mobile robots, such as odometry, exploration, obstacle avoidance, and simulation.


Vision-aided Planning for Robust Autonomous Navigation of Small-Scale Quadruped Robots

Vision-aided Planning for Robust Autonomous Navigation of Small-Scale Quadruped Robots
Author: Thomas O. Dudzik
Publisher:
Total Pages: 77
Release: 2020
Genre:
ISBN:

Download Vision-aided Planning for Robust Autonomous Navigation of Small-Scale Quadruped Robots Book in PDF, ePub and Kindle

Robust path planning in non-flat and non-rigid terrain poses a significant challenge for small-scale legged robots. For a quadruped robot to reliably operate autonomously in complex environments, it must be able to continuously determine sequences of feasible body positions that lead it towards a goal while maintaining balance and avoiding obstacles. Current solutions to the problem of motion planning have several shortcoming such as not exploiting the full flexibility of legged robots and not scaling well with environment size or complexity. In this thesis, we address the problem of navigation of quadruped robots by proposing and implementing a vision-aided planning framework on top of existing motion controllers that combines terrain awareness with graph-based search techniques. In particular, the proposed approach exploits the distinctive obstacle-negotiation capabilities of legged robots while keeping the computational complexity low enough to enable planning over considerable distances in real-time. We showcase the effectiveness of our approach both in simulated environments and on actual hardware using the MIT Mini-Cheetah Vision robotic platform.


Advances in Robot Navigation

Advances in Robot Navigation
Author: Alejandra Barrera
Publisher: BoD – Books on Demand
Total Pages: 254
Release: 2011-07-05
Genre: Computers
ISBN: 9533073462

Download Advances in Robot Navigation Book in PDF, ePub and Kindle

Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics.


Robot Navigation from Nature

Robot Navigation from Nature
Author: Michael John Milford
Publisher: Springer Science & Business Media
Total Pages: 203
Release: 2008-02-11
Genre: Technology & Engineering
ISBN: 3540775196

Download Robot Navigation from Nature Book in PDF, ePub and Kindle

This pioneering book describes the development of a robot mapping and navigation system inspired by models of the neural mechanisms underlying spatial navigation in the rodent hippocampus. Computational models of animal navigation systems have traditionally had limited performance when implemented on robots. This is the first research to test existing models of rodent spatial mapping and navigation on robots in large, challenging, real world environments.


Vision Based Autonomous Robot Navigation

Vision Based Autonomous Robot Navigation
Author: Amitava Chatterjee
Publisher: Springer
Total Pages: 235
Release: 2012-10-13
Genre: Technology & Engineering
ISBN: 3642339654

Download Vision Based Autonomous Robot Navigation Book in PDF, ePub and Kindle

This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system.


Intelligent Robotics and Applications

Intelligent Robotics and Applications
Author: Xin-Jun Liu
Publisher: Springer Nature
Total Pages: 780
Release: 2021-10-19
Genre: Computers
ISBN: 3030890929

Download Intelligent Robotics and Applications Book in PDF, ePub and Kindle

The 4-volume set LNAI 13013 – 13016 constitutes the proceedings of the 14th International Conference on Intelligent Robotics and Applications, ICIRA 2021, which took place in Yantai, China, during October 22-25, 2021. The 299 papers included in these proceedings were carefully reviewed and selected from 386 submissions. They were organized in topical sections as follows: Robotics dexterous manipulation; sensors, actuators, and controllers for soft and hybrid robots; cable-driven parallel robot; human-centered wearable robotics; hybrid system modeling and human-machine interface; robot manipulation skills learning; micro_nano materials, devices, and systems for biomedical applications; actuating, sensing, control, and instrumentation for ultra-precision engineering; human-robot collaboration; robotic machining; medical robot; machine intelligence for human motion analytics; human-robot interaction for service robots; novel mechanisms, robots and applications; space robot and on-orbit service; neural learning enhanced motion planning and control for human robot interaction; medical engineering.


Safe Robot Navigation Among Moving and Steady Obstacles

Safe Robot Navigation Among Moving and Steady Obstacles
Author: Andrey V. Savkin
Publisher: Butterworth-Heinemann
Total Pages: 360
Release: 2015-09-25
Genre: Technology & Engineering
ISBN: 0128037571

Download Safe Robot Navigation Among Moving and Steady Obstacles Book in PDF, ePub and Kindle

Safe Robot Navigation Among Moving and Steady Obstacles is the first book to focus on reactive navigation algorithms in unknown dynamic environments with moving and steady obstacles. The first three chapters provide introduction and background on sliding mode control theory, sensor models, and vehicle kinematics. Chapter 4 deals with the problem of optimal navigation in the presence of obstacles. Chapter 5 discusses the problem of reactively navigating. In Chapter 6, border patrolling algorithms are applied to a more general problem of reactively navigating. A method for guidance of a Dubins-like mobile robot is presented in Chapter 7. Chapter 8 introduces and studies a simple biologically-inspired strategy for navigation a Dubins-car. Chapter 9 deals with a hard scenario where the environment of operation is cluttered with obstacles that may undergo arbitrary motions, including rotations and deformations. Chapter 10 presents a novel reactive algorithm for collision free navigation of a nonholonomic robot in unknown complex dynamic environments with moving obstacles. Chapter 11 introduces and examines a novel purely reactive algorithm to navigate a planar mobile robot in densely cluttered environments with unpredictably moving and deforming obstacles. Chapter 12 considers a multiple robot scenario. For the Control and Automation Engineer, this book offers accessible and precise development of important mathematical models and results. All the presented results have mathematically rigorous proofs. On the other hand, the Engineer in Industry can benefit by the experiments with real robots such as Pioneer robots, autonomous wheelchairs and autonomous mobile hospital. First book on collision free reactive robot navigation in unknown dynamic environments Bridges the gap between mathematical model and practical algorithms Presents implementable and computationally efficient algorithms of robot navigation Includes mathematically rigorous proofs of their convergence A detailed review of existing reactive navigation algorithm for obstacle avoidance Describes fundamentals of sliding mode control


The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021)

The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021)
Author: Jian Yao
Publisher: Springer Nature
Total Pages: 1174
Release: 2022-03-03
Genre: Technology & Engineering
ISBN: 9811669635

Download The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021) Book in PDF, ePub and Kindle

This book is a collection of the papers accepted by the ICIVIS 2021—The International Conference on Image, Vision and Intelligent Systems held on June 15–17, 2021, in Changsha, China. The topics focus but are not limited to image, vision and intelligent systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by this conference proceedings.


Intelligent Robotics and Applications

Intelligent Robotics and Applications
Author: Huayong Yang
Publisher: Springer Nature
Total Pages: 618
Release: 2023-10-20
Genre: Computers
ISBN: 9819964830

Download Intelligent Robotics and Applications Book in PDF, ePub and Kindle

The 9-volume set LNAI 14267-14275 constitutes the proceedings of the 16th International Conference on Intelligent Robotics and Applications, ICIRA 2023, which took place in Hangzhou, China, during July 5–7, 2023. The 413 papers included in these proceedings were carefully reviewed and selected from 630 submissions. They were organized in topical sections as follows: Part I: Human-Centric Technologies for Seamless Human-Robot Collaboration; Multimodal Collaborative Perception and Fusion; Intelligent Robot Perception in Unknown Environments; Vision-Based Human Robot Interaction and Application. Part II: Vision-Based Human Robot Interaction and Application; Reliable AI on Machine Human Reactions; Wearable Sensors and Robots; Wearable Robots for Assistance, Augmentation and Rehabilitation of Human Movements; Perception and Manipulation of Dexterous Hand for Humanoid Robot. Part III: Perception and Manipulation of Dexterous Hand for Humanoid Robot; Medical Imaging for Biomedical Robotics; Advanced Underwater Robot Technologies; Innovative Design and Performance Evaluation of Robot Mechanisms; Evaluation of Wearable Robots for Assistance and Rehabilitation; 3D Printing Soft Robots. Part IV: 3D Printing Soft Robots; Dielectric Elastomer Actuators for Soft Robotics; Human-like Locomotion and Manipulation; Pattern Recognition and Machine Learning for Smart Robots. Part V: Pattern Recognition and Machine Learning for Smart Robots; Robotic Tactile Sensation, Perception, and Applications; Advanced Sensing and Control Technology for Human-Robot Interaction; Knowledge-Based Robot Decision-Making and Manipulation; Design and Control of Legged Robots. Part VI: Design and Control of Legged Robots; Robots in Tunnelling and Underground Space; Robotic Machining of Complex Components; Clinically Oriented Design in Robotic Surgery and Rehabilitation; Visual and Visual-Tactile Perception for Robotics. Part VII: Visual and Visual-Tactile Perception for Robotics; Perception, Interaction, and Control of Wearable Robots; Marine Robotics and Applications; Multi-Robot Systems for Real World Applications; Physical and Neurological Human-Robot Interaction. Part VIII: Physical and Neurological Human-Robot Interaction; Advanced Motion Control Technologies for Mobile Robots; Intelligent Inspection Robotics; Robotics in Sustainable Manufacturing for Carbon Neutrality; Innovative Design and Performance Evaluation of Robot Mechanisms. Part IX: Innovative Design and Performance Evaluation of Robot Mechanisms; Cutting-Edge Research in Robotics.