Understanding C4 Evolution And Function PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Understanding C4 Evolution And Function PDF full book. Access full book title Understanding C4 Evolution And Function.

Understanding C4 Evolution and Function

Understanding C4 Evolution and Function
Author: Sarah Covshoff
Publisher: Frontiers Media SA
Total Pages: 185
Release: 2021-12-28
Genre: Science
ISBN: 2889718646

Download Understanding C4 Evolution and Function Book in PDF, ePub and Kindle


C4 Plant Biology

C4 Plant Biology
Author:
Publisher: Elsevier
Total Pages: 616
Release: 1998-12-21
Genre: Science
ISBN: 0080528392

Download C4 Plant Biology Book in PDF, ePub and Kindle

Due to many issues related to long-term carbon dynamics, an improved understanding of the biology of C4 photosynthesis is required by more than the traditional audience of crop scientists, plant physiologists, and plant ecologists. This work synthesizes the latest developments in C4 biochemistry, physiology, systematics, and ecology. The book concludes with chapters discussing the role of C4 plants in the future development of the biosphere, particularly their interactive effects on soil, hydrological, and atmospheric processes.


C4 Photosynthesis and Related CO2 Concentrating Mechanisms

C4 Photosynthesis and Related CO2 Concentrating Mechanisms
Author: Agepati S. Raghavendra
Publisher: Springer Science & Business Media
Total Pages: 424
Release: 2010-10-20
Genre: Science
ISBN: 9048194075

Download C4 Photosynthesis and Related CO2 Concentrating Mechanisms Book in PDF, ePub and Kindle

The C4 pathway of photosynthesis was discovered and characterized, more than four decades ago. Interest in C4 pathway has been sustained and has recently been boosted with the discovery of single-cell C4 photosynthesis and the successful introduction of key C4-cycle enzymes in important crops, such as rice. Further, cold-tolerant C4 plants are at the verge of intense exploitation as energy crops. Rapid and multidisciplinary progress in our understanding of C4 plants warrants a comprehensive documentation of the available literature. The book, which is a state-of-the-art overview of several basic and applied aspects of C4 plants, will not only provide a ready source of information but also triggers further research on C4 photosynthesis. Written by internationally acclaimed experts, it provides an authoritative source of progress made in our knowledge of C4 plants, with emphasis on physiology, biochemistry, molecular biology, biogeography, evolution, besides bioengineering C4 rice and biofuels. The book is an advanced level textbook for postgraduate students and a reference book for researchers in the areas of plant biology, cell biology, biotechnology, agronomy, horticulture, ecology and evolution.


On the Economy of Plant Form and Function

On the Economy of Plant Form and Function
Author: Thomas J. Givnish
Publisher: Cambridge University Press
Total Pages: 736
Release: 2005-11-10
Genre: Science
ISBN: 9780521022491

Download On the Economy of Plant Form and Function Book in PDF, ePub and Kindle

Recent studies that analyze the impact of various plant traits on whole-plant growth and competitive ability have provided insights into the selective pressures on characteristics such as leaf reflectivity, effective leaf size, stomatal conductance, size of photosynthetic enzyme pools, crown form, xylem structure, nitrogen fixation, and root versus shoot allocation. This research has reached an exciting stage, leading to quantitative predictions of favoured trends in these traits as a function of environmental parameters and fundamental physiological constraints. Such results reveal the importance of ecological patterns in plant form and physiology, and of evolutionary constraints on photosynthesis and primary productivity. On the Economy of Plant Form and Function summarizes the major recent advances in the economic analysis of plant behavior and suggests a framework for a unified, quantitative approach to understanding photosynthetic adaptations, their integration with other aspects of plant form, and their relationship to carbon balance and ultimate limits on plant productivity.


Nonlinear Constraint-based Modeling of the Function and Evolution of C4 Photosynthesis

Nonlinear Constraint-based Modeling of the Function and Evolution of C4 Photosynthesis
Author: Elijah Lane Bogart
Publisher:
Total Pages: 374
Release: 2015
Genre:
ISBN:

Download Nonlinear Constraint-based Modeling of the Function and Evolution of C4 Photosynthesis Book in PDF, ePub and Kindle

C4 plants, such as maize, concentrate carbon dioxide in a specialized compartment surrounding the veins of their leaves to improve the efficiency of carbon dioxide assimilation. The C4 photosynthetic system is a key target of efforts to improve crop yield through biotechnology, and its independent development in dozens of plant species widely separated geographically and phylogenetically is an intriguing example of convergent evolution. The availability of extensive high-throughput experimental data from C4 and non-C4 plants, as well as the origin of the biochemical pathways of C4 photosynthesis in the recruitment of enzymatic reactions already present in the ancestral state, makes it natural to study the development, function and evolution of the C4 system in the context of a plant's complete metabolic network, but the essentially nonlinear relationship between rates of photosynthesis, rates of photorespiration, and carbon dioxide and oxygen levels prevents the application of conventional, linear methods for genome-scale metabolic modeling to these questions. I present an approach which incorporates nonlinear constraints on reaction rates arising from enzyme kinetics and diffusion laws into flux balance analysis problems, and software to enable it. Applying the technique to a new genomescale model, suitable for describing metabolism in the leaves of either Zea mays or generic plants, I show it can reproduce known nonlinear physiological re- sponses of C3 and C4 plants. In combination with a novel method for inferring metabolic activity from enzyme expression data, I use the nonlinear model to interpret multiple channels of transcriptomic and biochemical data in the developing maize leaf, showing that the predicted metabolic state reproduces the transition between carbonimporting tissue at the leaf base and carbon-exporting tissue at the leaf tip while making additional testable predictions about metabolic shifts along the developmental axis. Adapting a method for simulating transition paths in physical and chemical systems, I find the highest-fitness paths connecting C3 and C4 states in the model's high-dimensional parameter space, show that such paths reproduce known aspects of the evolutionary history of the C4 position, and study their response to variation in environmental conditions and C4 biochemistry.


Homology, Genes, and Evolutionary Innovation

Homology, Genes, and Evolutionary Innovation
Author: Günter P. Wagner
Publisher: Princeton University Press
Total Pages: 494
Release: 2018-07-10
Genre: Science
ISBN: 0691180679

Download Homology, Genes, and Evolutionary Innovation Book in PDF, ePub and Kindle

A major synthesis of homology, written by a top researcher in the field Homology—a similar trait shared by different species and derived from common ancestry, such as a seal's fin and a bird’s wing—is one of the most fundamental yet challenging concepts in evolutionary biology. This groundbreaking book provides the first mechanistically based theory of what homology is and how it arises in evolution. Günter Wagner, one of the preeminent researchers in the field, argues that homology, or character identity, can be explained through the historical continuity of character identity networks—that is, the gene regulatory networks that enable differential gene expression. He shows how character identity is independent of the form and function of the character itself because the same network can activate different effector genes and thus control the development of different shapes, sizes, and qualities of the character. Demonstrating how this theoretical model can provide a foundation for understanding the evolutionary origin of novel characters, Wagner applies it to the origin and evolution of specific systems, such as cell types; skin, hair, and feathers; limbs and digits; and flowers. The first major synthesis of homology to be published in decades, Homology, Genes, and Evolutionary Innovation reveals how a mechanistically based theory can serve as a unifying concept for any branch of science concerned with the structure and development of organisms, and how it can help explain major transitions in evolution and broad patterns of biological diversity.


Photosynthesis: Physiology and Metabolism

Photosynthesis: Physiology and Metabolism
Author: Richard C. Leegood
Publisher: Springer Science & Business Media
Total Pages: 630
Release: 2006-04-11
Genre: Science
ISBN: 0306481375

Download Photosynthesis: Physiology and Metabolism Book in PDF, ePub and Kindle

Photosynthesis: Physiology and Metabolism is the we have concentrated on the acquisition and ninth volume in theseries Advances in Photosynthesis metabolism of carbon. However, a full understanding (Series Editor, Govindjee). Several volumes in this of reactions involved in the conversion of to series have dealt with molecular and biophysical sugars requires an integrated view of metabolism. aspects of photosynthesis in the bacteria, algae and We have, therefore, commissioned international cyanobacteria, focussing largely on what have been authorities to write chapters on, for example, traditionally, though inaccurately, termed the ‘light interactionsbetween carbon and nitrogen metabolism, reactions’(Volume 1, The Molecular Biology of on respiration in photosynthetic tissues and on the Cyanobacteria;Volume2,AnoxygenicPhotosynthetic control of gene expression by metabolism. Photo- Bacteria, Volume 3, Biophysical Techniques in synthetic carbon assimilation is also one of the most Photosynthesis and Volume 7, The Molecular Biology rapid metabolic processes that occurs in plant cells, of the Chloroplasts and Mitochondria in Chlamy- and therefore has to be considered in relation to domonas). Volume 4 dealt with Oxygenic Photo- transport, whether it be the initial uptake of carbon, synthesis: The Light Reactions, and volume 5 with intracellular transport between organelles, inter- Photosynthesis and the Environment, whereas the cellular transport, as occurs in plants, or transport structure and function of lipids in photosynthesis of photosynthates through and out of the leaf. All was covered in Volume 6 of this series: Lipids in these aspects of transport are also covered in the Photosynthesis: Structure, Function and Genetics, book.


Biochemical Models of Leaf Photosynthesis

Biochemical Models of Leaf Photosynthesis
Author: Susanna Von Caemmerer
Publisher: CSIRO PUBLISHING
Total Pages: 186
Release: 2000
Genre: Science
ISBN: 9780643063792

Download Biochemical Models of Leaf Photosynthesis Book in PDF, ePub and Kindle

Increasing concerns of global climatic change have stimulated research in all aspects of carbon exchange. This has restored interest in leaf-photosynthetic models to predict and assess changes in photosynthetic CO2 assimilation in different environments. This is a comprehensive presentation of the most widely used models of steady-state photosynthesis by an author who is a world authority. Treatments of C3, C4 and intermediate pathways of photosynthesis in relation to environment have been updated to include work on antisense transgenic plants. It will be a standard reference for the formal analysis of photosynthetic metabolism in vivo by advanced students and researchers.


Charting New Pathways To C4 Rice

Charting New Pathways To C4 Rice
Author: John E Sheehy
Publisher: World Scientific
Total Pages: 435
Release: 2008-03-28
Genre: Science
ISBN: 9814474533

Download Charting New Pathways To C4 Rice Book in PDF, ePub and Kindle

Feeding Asia in the 21st century will require a second Green Revolution. However, unlike in the first generation, future yield increases will have to be grown using less water and nitrogen in a world of unfavorable climate change — this can only be done by increasing the efficiency of the photosynthetic system, i.e. developing a C4 rice plant. If and when achieved, it would be the first nonevolutionary example of reconstructing the primary metabolism of a plant. The impact of such a scientific achievement would be undeniable, but it requires either a superb feat of genetic engineering or forced evolution.This book describes the alternative ways of achieving C4 photosynthesis in rice. Featuring contributions from leading experts, case studies are used to present views on how C4 rice might be constructed and applied, along with the socioeconomic implications that it entails. Ultimately, readers will be better informed about this highly relevant and timely topic of improving rice yield in a global environment grappling with unpredictable climate change.


The Leaf: A Platform for Performing Photosynthesis

The Leaf: A Platform for Performing Photosynthesis
Author: William W. Adams III
Publisher: Springer
Total Pages: 575
Release: 2018-10-24
Genre: Science
ISBN: 3319935941

Download The Leaf: A Platform for Performing Photosynthesis Book in PDF, ePub and Kindle

The leaf is an organ optimized for capturing sunlight and safely using that energy through the process of photosynthesis to drive the productivity of the plant and, through the position of plants as primary producers, that of Earth’s biosphere. It is an exquisite organ composed of multiple tissues, each with unique functions, working synergistically to: (1) deliver water, nutrients, signals, and sometimes energy-rich carbon compounds throughout the leaf (xylem); (2) deliver energy-rich carbon molecules and signals within the leaf during its development and then from the leaf to the plant once the leaf has matured (phloem); (3) regulate exchange of gasses between the leaf and the atmosphere (epidermis and stomata); (4) modulate the radiation that penetrates into the leaf tissues (trichomes, the cuticle, and its underlying epidermis); (5) harvest the energy of visible sunlight to transform water and carbon dioxide into energy-rich sugars or sugar alcohols for export to the rest of the plant (palisade and spongy mesophyll); and (6) store sugars and/or starch during the day to feed the plant during the night and/or acids during the night to support light-driven photosynthesis during the day (palisade and spongy mesophyll). Various regulatory controls that have been shaped through the evolutionary history of each plant species result in an incredible diversity of leaf form across the plant kingdom. Genetic programming is also flexible in allowing acclimatory phenotypic adjustments that optimize leaf functioning in response to a particular set of environmental conditions and biotic influences experienced by the plant. Moreover, leaves and the primary processes carried out by the leaf respond to changes in their environment, and the status of the plant, through multiple regulatory networks over time scales ranging from seconds to seasons. This book brings together the findings from laboratories at the forefront of research into various aspects of leaf function, with particular emphasis on the relationship to photosynthesis.