Ultra Relativistic Effects Of Laser Beam And Electron Interactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ultra Relativistic Effects Of Laser Beam And Electron Interactions PDF full book. Access full book title Ultra Relativistic Effects Of Laser Beam And Electron Interactions.

Ultra-relativistic Effects of Laser Beam and Electron Interactions

Ultra-relativistic Effects of Laser Beam and Electron Interactions
Author: Alexandru Mircea Popa
Publisher:
Total Pages: 0
Release: 2021
Genre: Laser-plasma interactions
ISBN: 9780750339834

Download Ultra-relativistic Effects of Laser Beam and Electron Interactions Book in PDF, ePub and Kindle

The latest generation of high-power pulsed lasers has renewed interest in the ultra-relativistic effects produced by the interaction between laser beams and electrons. Synthesising previous research, this book presents a unitary treatment of the main effects that occur in the ultra-relativistic interactions between laser beams and electrons. It uses exact solutions of relativistic and classical quantum equations, including a new solution of the Dirac equation, to fully describe the field and model the main ultra-relativistic effects created within it.


Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics
Author: National Research Council
Publisher: National Academies Press
Total Pages: 177
Release: 2003-05-11
Genre: Science
ISBN: 030908637X

Download Frontiers in High Energy Density Physics Book in PDF, ePub and Kindle

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.


Laser-Plasma Interactions

Laser-Plasma Interactions
Author: Dino A. Jaroszynski
Publisher: CRC Press
Total Pages: 454
Release: 2009-03-27
Genre: Science
ISBN: 1584887796

Download Laser-Plasma Interactions Book in PDF, ePub and Kindle

A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap


Laser Physics at Relativistic Intensities

Laser Physics at Relativistic Intensities
Author: A.V. Borovsky
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 2013-04-17
Genre: Science
ISBN: 3662052423

Download Laser Physics at Relativistic Intensities Book in PDF, ePub and Kindle

For the first time in a book, this monograph describes relativistic and charge-displacement self-channelling, which is the major finding in the physics of superintense laser beams. It also presents general nonlinear models of lasers - plasma interactions specifically in the case of extremely high intensities.


Free Electron Laser

Free Electron Laser
Author: Thomas Jun Tong Kwan
Publisher:
Total Pages: 386
Release: 1978
Genre: Electron beams
ISBN:

Download Free Electron Laser Book in PDF, ePub and Kindle


Applications of Laser-Plasma Interactions

Applications of Laser-Plasma Interactions
Author: Shalom Eliezer
Publisher: CRC Press
Total Pages: 293
Release: 2008-12-22
Genre: Science
ISBN: 084937605X

Download Applications of Laser-Plasma Interactions Book in PDF, ePub and Kindle

Recent advances in the development of lasers with more energy, power, and brightness have opened up new possibilities for exciting applications. Applications of Laser-Plasma Interactions reviews the current status of high power laser applications. The book first explores the science and technology behind the ignition and burn of imploded fusion fue


Laser-Driven Sources of High Energy Particles and Radiation

Laser-Driven Sources of High Energy Particles and Radiation
Author: Leonida Antonio Gizzi
Publisher: Springer Nature
Total Pages: 254
Release: 2019-09-05
Genre: Science
ISBN: 3030258505

Download Laser-Driven Sources of High Energy Particles and Radiation Book in PDF, ePub and Kindle

This volume presents a selection of articles based on inspiring lectures held at the “Capri” Advanced Summer School, an original event conceived and promoted by Leonida Antonio Gizzi and Ralph Assmann that focuses on novel schemes for plasma-based particle acceleration and radiation sources, and which brings together researchers from the conventional accelerator community and from the high-intensity laser-matter interaction research fields. Training in these fields is highly relevant for ultra-intense lasers and applications, which have enjoyed dramatic growth following the development of major European infrastructures like the Extreme Light Infrastructure (ELI) and the EuPRAXIA project. The articles preserve the tutorial character of the lectures and reflect the latest advances in their respective fields. The volume is mainly intended for PhD students and young researchers getting started in this area, but also for scientists from other fields who are interested in the latest developments. The content will also appeal to radiobiologists and medical physicists, as it includes contributions on potential applications of laser-based particle accelerators.


Relativistic Electron Beam Interaction and Ka - Generation in Solid Targets

Relativistic Electron Beam Interaction and Ka - Generation in Solid Targets
Author:
Publisher:
Total Pages:
Release: 1999
Genre:
ISBN:

Download Relativistic Electron Beam Interaction and Ka - Generation in Solid Targets Book in PDF, ePub and Kindle

When fs laser pulses interact with solid surfaces at intensities I?2> 1018 W/cm2?m2, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K{sub {alpha}}) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fuer Quantenoptik, the authors investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10?m. By varying the position of the focus, they measure the copper K{sub {alpha}} - yield as a function of intensity in a range of 1015 to 2 x 1018 W/cm2 while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 1017 W/cm2. However, this result is readily explained by the weak scaling of the hot-electron temperature with intensity. An efficiency of 2 x 10−4 for the conversion of laser energy into copper K{sub {alpha}} is measured. Simulations of the interaction of the hot electrons with the cold target material and the conversion into X-rays are carried out by means of the TIGER/ITS code, a time-independent, coupled electron/photon Monte Carlo transport code. The code calculates the propagation of individual electrons and the generation of photons in cold material. Comparison of the code predictions with the data shows an efficiency of 15% for the generation of electrons with energies in the 100 keV range. A second experiment involves the demonstration of photopumping of an innershell transition in cobalt by the copper radiation. Comparing the emission with the one of nickel, which is not photopumped by copper K{sub {alpha}} photons, an enhancement of more than a factor of two was obtained. An essential part of this experiment is the use of a 1 mm carbon sheet to block the electrons from the material to be photopumped.