Two Particle Correlations In Heavy Light Ion Collisions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Two Particle Correlations In Heavy Light Ion Collisions PDF full book. Access full book title Two Particle Correlations In Heavy Light Ion Collisions.

Two-particle Correlations of Identified Particles in Heavy Ion Collisions at STAR

Two-particle Correlations of Identified Particles in Heavy Ion Collisions at STAR
Author: Prabhat Bhattarai
Publisher:
Total Pages: 440
Release: 2016
Genre:
ISBN:

Download Two-particle Correlations of Identified Particles in Heavy Ion Collisions at STAR Book in PDF, ePub and Kindle

The study of quarks and their interactions through gluons has been an active area of research since their discovery. For two decades the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been dedicated to studying the interactions between quarks by producing nuclear matter in an extremely dense and hot environment. It has been hypothesized that colliding beams of atomic nuclei near the speed of light creates the hot and dense environment in which all quarks in the nuclei de-confine to form a short-lived state of matter called a Quark Gluon Plasma (QGP). Because of the short lifetime of QGP, it is impossible to observe it directly and, the only way to study such matter is through the final state particles. Two-particle correlation, which is defined using Pearson's normalized covariance, is one of the techniques to study the early interactions via the final state particles. A broad survey has been made to study the two-particle correlations of identified-charged hadrons (pi, K and p) in various ranges of momentum for the hadrons produced in √sNN=200 GeV Au+Au collisions at the STAR experiment at RHIC. A total of 2123 two-dimensional independent structures made by correlation coefficients in relative angular space in (eta, phi) for different combinations of identified hadrons have been studied. Correlations between any two identified particles contrasts to all-particle correlations giving an opportunity to study the contribution of each particle species in the hadronization processes. As a new feature, same-side anti-correlations are observed in both like-sign and unlike-sign pairs in certain yT bins and in certain identified particles. A significant feature of the final state distribution of particles is an azimuthal anisotropy which is defined as the second Fourier component; the amplitude is proportional to parameter v2. We report the measure of azimuthal anisotropy of identified hadrons for the first time and test for the factorization used in conventional analysis. The data presented here constitute a comprehensive measurement of the light-flavor, di-hadron density as function of collision centrality, transverse momentum and 2D relative angles in longitudinal (beam direction) and azimuthal directions.


Control Study of Two-particle Correlations in Heavy Ion Collisions at RHIC-PHENIX

Control Study of Two-particle Correlations in Heavy Ion Collisions at RHIC-PHENIX
Author: Eric Vazquez
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Control Study of Two-particle Correlations in Heavy Ion Collisions at RHIC-PHENIX Book in PDF, ePub and Kindle

Measurements at the Relativistic Heavy Ion Collider (RHIC) have provided indirect measurements of jets in a heavy ion environment using the two- particle correlation method in the presence of a high-pT particle. These measurements have offered insight into the formation of a new state of dense nuclear matter called the Quark-Gluon Plasma (QGP) through the observation of jet quenching. However, the two-particle methodology has also shown to be biased towards di-jet production near the surface of the medium being created. Here, a detailed study using the PHENIX detector is provided, in an attempt to measure a more accurate jet-induced two-particle correlation measurement than previously published and to reduce the bias observed in two-particle correlation measurements. The reduction in surface bias emission is performed via the requirement of two antipodal high-pT particles (a.k.a. "2+1" correlation) in an attempt to control the production point of the di-jet. The measurements made in Au+Au collisions when compared to p+p collisions show that the method provides additional sensitivity to the jet quenching previously observed in two-particle correlation method.


Centrality Dependence of Two-particle Correlations in Relativistic Heavy Ion Collisions

Centrality Dependence of Two-particle Correlations in Relativistic Heavy Ion Collisions
Author: Youngsoo Park
Publisher:
Total Pages: 70
Release: 2009
Genre:
ISBN:

Download Centrality Dependence of Two-particle Correlations in Relativistic Heavy Ion Collisions Book in PDF, ePub and Kindle

Results on the centrality dependence of two-particle correlations in Au+Au collisions at ... 200GeV are presented. A particular focus is devoted to investigating any anomalous behavior in the centrality dependence of correlation functions, as previous results suggest existence of such tendencies around Npart [approx.] 50. Correlation functions are calculated for a wide kinematic region of ... from data obtained by the PHOBOS experiment at RHIC. The RHIC layout and the PHOBOS detector setup is discussed. Data acquisition method employed by the PHOBOS experiment, data processing procedures and event selection criteria are presented. The two-particle correlation function is defined and calculation procedures are described. Decomposition analysis is explained as the fit function and the constituting components are introduced. Analysis results for correlation functions and fits are presented. The results suggest that in the kinematic region covered by the analysis of this thesis, no anomalous trends in component behavior exists.


Measurements of Di-jet Π0-h± Correlations in Light-heavy Ion Collisions at RHIC-PHENIX

Measurements of Di-jet Π0-h± Correlations in Light-heavy Ion Collisions at RHIC-PHENIX
Author: Abinash Pun
Publisher:
Total Pages:
Release: 2019
Genre: Heavy ions
ISBN:

Download Measurements of Di-jet Π0-h± Correlations in Light-heavy Ion Collisions at RHIC-PHENIX Book in PDF, ePub and Kindle

The possible presence of Quark-Gluon Plasma (QGP), the new state of matter created at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) in Au+Au and Pb+Pb collisions, is currently under investigation for smaller collisions systems such as light-heavy ions and even p+p. Long range angular correlations of particles produced in p+Pb, p+Au, d+Au, and 3He+Au, show evidence of QGP collective flow, but another signature, QGP-induced jet energy loss effects has not been identified. To address this situation, in this dissertation, a recently introduced observable RI is employed in light-heavy ion collisions. RI is derived from two-particle correlation method commonly used to study jet modification from energy loss in Au+Au.


Verification and Simulations of Two Particle Correlation Background in Heavy Ion Collisions Using Mean Seed Mean Partners Method

Verification and Simulations of Two Particle Correlation Background in Heavy Ion Collisions Using Mean Seed Mean Partners Method
Author: Cole Raisbeck
Publisher:
Total Pages:
Release: 2018
Genre: Heavy ions
ISBN:

Download Verification and Simulations of Two Particle Correlation Background in Heavy Ion Collisions Using Mean Seed Mean Partners Method Book in PDF, ePub and Kindle

A suite of simulation tools was designed and developed to simulate two particle correlations in heavy ion collisions. This included additions to the HIJING Monte Carlo simulation and the creation of a new fast Monte Carlo simulation program, QMC. These Monte Carlos were then used to demonstrate the effect of an isolation cut on the the mean seed mean partner (MSMP) background normalization method.


Two-particle Correlations in Angular and Momentum Space in Heavy Ion Collisions at STAR

Two-particle Correlations in Angular and Momentum Space in Heavy Ion Collisions at STAR
Author: Elizabeth Wingfield Oldag
Publisher:
Total Pages: 320
Release: 2013
Genre:
ISBN:

Download Two-particle Correlations in Angular and Momentum Space in Heavy Ion Collisions at STAR Book in PDF, ePub and Kindle

For over a decade studies of the strong interaction in extremely dense nuclear environments have been done at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It is hypothesized that colliding two beams of Au nuclei at relativistic speeds creates an environment of hot dense nuclear matter where the quarks and gluons inside the nucleus, which are normally confined within the protons and neutrons, become deconfined into a soup called the quark-gluon plasma. Since direct observation of this short-lived phase is impossible, many sophisticated analysis techniques attempt to study the early interactions via the final state particles. What has emerged from analyses of the data are two, contradictory paradigms for understanding the results. On the one hand the colliding quarks and gluons are thought to strongly interact and reach thermal equilibrium. The other view is that primary parton-parton scattering leads directly to jet fragmentation with little effect from re-scattering. It is in principle possible to distinguish and perhaps falsify one or both of these models of relativistic heavy ion collisions via the analysis of two-particle correlations among all charged particles produced in [mathematical symbols] = 200 GeV Au+Au collisions at the STAR experiment at RHIC. This dissertation presents studies of two-particle correlations, whose derivation can be traced back to Pearson's correlation coefficient, in transverse momentum and angular space. In momentum space a broad peak is observed extending from 0.5-4.0 GeV/c which, as a function of nuclear overlap, remains at a fixed position while monotonically increasing in amplitude. Comparisons to theoretical models suggests this peak is from jet fragmentation. In a complementary study the momentum distribution of correlations in ([eta],[phi]) space is investigated. The momentum distribution of correlated pairs that contribute to the peak near the origin, commonly associated with jet fragmentation, is peaked around 1.5 GeV/c and does not soften with increased centrality. These measurements present important aspects of the available six dimensional correlation space and provide definitive tests for theoretical models. Preliminary findings do not appear to support the hypothesis of a strongly interacting QGP where back-to-back jets are expected to be significantly suppressed.