Transport Equations For Electrons In Two Valley Semiconductors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Transport Equations For Electrons In Two Valley Semiconductors PDF full book. Access full book title Transport Equations For Electrons In Two Valley Semiconductors.

Transport Equations for Electrons in Two-valley Semiconductors

Transport Equations for Electrons in Two-valley Semiconductors
Author: Kjell Blötekjaer
Publisher:
Total Pages: 50
Release: 1969
Genre: Electrons
ISBN:

Download Transport Equations for Electrons in Two-valley Semiconductors Book in PDF, ePub and Kindle

Transport equations are derived for particles, momentum and energy of electrons in a semiconductor with two distinct valleys in the conduction band, such as GaAs. Care is taken to state and discuss the assumptions which are made in the derivation. The collision processes are expressed in terms of relaxation times. The accuracy is improved by considering these to depend on the average kinetic energy rather than the electron temperature. Other transport equations used in the literature are discussed, and shown to be incomplete and inaccurate in many cases. (Author).


Transport Equations for Semiconductors

Transport Equations for Semiconductors
Author: Ansgar Jüngel
Publisher: Springer Science & Business Media
Total Pages: 326
Release: 2009-03-17
Genre: Science
ISBN: 3540895256

Download Transport Equations for Semiconductors Book in PDF, ePub and Kindle

This volume presents a systematic and mathematically accurate description and derivation of transport equations in solid state physics, in particular semiconductor devices.


Transport Equations for Semiconductors

Transport Equations for Semiconductors
Author: Ansgar Jüngel
Publisher: Springer
Total Pages: 326
Release: 2009-04-20
Genre: Science
ISBN: 3540895264

Download Transport Equations for Semiconductors Book in PDF, ePub and Kindle

Semiconductor devices are ubiquitous in the modern computer and telecommunications industry. A precise knowledge of the transport equations for electron flow in semiconductors when a voltage is applied is therefore of paramount importance for further technological breakthroughs. In the present work, the author tackles their derivation in a systematic and rigorous way, depending on certain key parameters such as the number of free electrons in the device, the mean free path of the carriers, the device dimensions and the ambient temperature. Accordingly a hierarchy of models is examined which is reflected in the structure of the book: first the microscopic and macroscopic semi-classical approaches followed by their quantum-mechanical counterparts.


Balance Equation Approach to Electron Transport In Semiconductors

Balance Equation Approach to Electron Transport In Semiconductors
Author: Xiaolin Lei
Publisher: World Scientific
Total Pages: 657
Release: 2008
Genre: Technology & Engineering
ISBN: 9812819029

Download Balance Equation Approach to Electron Transport In Semiconductors Book in PDF, ePub and Kindle

This book presents a systematic, comprehensive and up-to-date description of the physical basis of the balance equation transport theory and its applications in bulk and low-dimensional semiconductors. The different aspects of the balance equation method, originally proposed by C S Ting and the author of the present book, were reviewed in the volume entitled Physics of Hot Electron Transport in Semiconductors (edited by C S Ting, World Scientific, 1992). Since then, this method has been extensively developed and applied to various new fields, such as transport in nonparabolic systems, spatially nonuniform systems and semiconductor devices, miniband conduction of superlattices, hot-electron magnetotransport, effects of impact ionization in transport, microwave-induced magnetoresistance oscillation, radiation-driven transport and electron cooling, etc. Due to its simplicity and effectiveness, the balance equation approach has become a useful tool to tackle the many transport phenomena in semiconductors, and provides a reliable basis for developing theories, modeling devices and explaining experiments.The book may be used as a textbook by graduate students. It will also benefit researchers in the field by helping them grasp the basic principles and techniques of the method, without having to spend a lot of time digging out the information from widespread literature covering a period of 30 years.


Semiconductor Equations

Semiconductor Equations
Author: Peter A. Markowich
Publisher: Springer Science & Business Media
Total Pages: 261
Release: 2012-12-06
Genre: Mathematics
ISBN: 3709169615

Download Semiconductor Equations Book in PDF, ePub and Kindle

In recent years the mathematical modeling of charge transport in semi conductors has become a thriving area in applied mathematics. The drift diffusion equations, which constitute the most popular model for the simula tion of the electrical behavior of semiconductor devices, are by now mathe matically quite well understood. As a consequence numerical methods have been developed, which allow for reasonably efficient computer simulations in many cases of practical relevance. Nowadays, research on the drift diffu sion model is of a highly specialized nature. It concentrates on the explora tion of possibly more efficient discretization methods (e.g. mixed finite elements, streamline diffusion), on the improvement of the performance of nonlinear iteration and linear equation solvers, and on three dimensional applications. The ongoing miniaturization of semiconductor devices has prompted a shift of the focus of the modeling research lately, since the drift diffusion model does not account well for charge transport in ultra integrated devices. Extensions of the drift diffusion model (so called hydrodynamic models) are under investigation for the modeling of hot electron effects in submicron MOS-transistors, and supercomputer technology has made it possible to employ kinetic models (semiclassical Boltzmann-Poisson and Wigner Poisson equations) for the simulation of certain highly integrated devices.


Simulation of Semiconductor Processes and Devices 2001

Simulation of Semiconductor Processes and Devices 2001
Author: Dimitris Tsoukalas
Publisher: Springer Science & Business Media
Total Pages: 463
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3709162440

Download Simulation of Semiconductor Processes and Devices 2001 Book in PDF, ePub and Kindle

This volume contains the Proceedings of the International Conference on Simulation of Semiconductor Devices and Processes, SISPAD 01, held on September 5–7, 2001, in Athens. The conference provided an open forum for the presentation of the latest results and trends in process and device simulation. The trend towards shrinking device dimensions and increasing complexity in process technology demands the continuous development of advanced models describing basic physical phenomena involved. New simulation tools are developed to complete the hierarchy in the Technology Computer Aided Design simulation chain between microscopic and macroscopic approaches. The conference program featured 8 invited papers, 60 papers for oral presentation and 34 papers for poster presentation, selected from a total of 165 abstracts from 30 countries around the world. These papers disclose new and interesting concepts for simulating processes and devices.


Electron Transport Phenomena in Semiconductors

Electron Transport Phenomena in Semiconductors
Author: B. M. Askerov
Publisher: World Scientific
Total Pages: 416
Release: 1994
Genre: Technology & Engineering
ISBN: 9789810212834

Download Electron Transport Phenomena in Semiconductors Book in PDF, ePub and Kindle

This book contains the first systematic and detailed exposition of the linear theory of the stationary electron transport phenomena in semiconductors. Arbitrary isotropic and anisotropic nonparabolic bands as well as p-Ge-type bands are considered. Phonon drag effect are taken account of in an arbitrary nonquantizing magnetic field. Scattering theory is discussed in detail with account taken of the Bloch wave functions effect. Transport phenomena in the quantizing magnetic field are studied as well as the size effects in thin films. Band structures of the semiconductors and semiconductor compounds of interest are also considered.The main part of the book deals with the three important problems: charge carrier statistics in a semiconductor, classical and quantum theory of the electron transport phenomena. All the theoretical results considered as well as the validity conditions are presented in the form which may be directly used to interpret experimental data.


Compound Semiconductor Device Physics

Compound Semiconductor Device Physics
Author: Sandip Tiwari
Publisher: Academic Press
Total Pages: 845
Release: 2013-10-22
Genre: Science
ISBN: 148328929X

Download Compound Semiconductor Device Physics Book in PDF, ePub and Kindle

This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those interested in silicon devices. Each chapter ends with exercises that have been designed to reinforce concepts, to complement arguments or derivations, and to emphasize the nature of approximations by critically evaluating realistic conditions. One of the most rigorous treatments of compound semiconductor device physics yet published**Essential reading for a complete understanding of modern devices**Includes chapter-ending exercises to facilitate understanding


Analysis and Simulation of Semiconductor Devices

Analysis and Simulation of Semiconductor Devices
Author: S. Selberherr
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3709187524

Download Analysis and Simulation of Semiconductor Devices Book in PDF, ePub and Kindle

The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.


Modeling and Simulation in Engineering

Modeling and Simulation in Engineering
Author: Jan Valdman
Publisher: BoD – Books on Demand
Total Pages: 242
Release: 2020-12-09
Genre: Computers
ISBN: 1839682493

Download Modeling and Simulation in Engineering Book in PDF, ePub and Kindle

The general aim of this book is to present selected chapters of the following types: chapters with more focus on modeling with some necessary simulation details and chapters with less focus on modeling but with more simulation details. This book contains eleven chapters divided into two sections: Modeling in Continuum Mechanics and Modeling in Electronics and Engineering. We hope our book entitled "Modeling and Simulation in Engineering - Selected Problems" will serve as a useful reference to students, scientists, and engineers.