Transition Metal Catalyzed Carbonyl Additions Under The Conditions Of Transfer Hydrogenation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Transition Metal Catalyzed Carbonyl Additions Under The Conditions Of Transfer Hydrogenation PDF full book. Access full book title Transition Metal Catalyzed Carbonyl Additions Under The Conditions Of Transfer Hydrogenation.

Transition Metal Catalyzed Carbonyl Additions Under the Conditions of Transfer Hydrogenation

Transition Metal Catalyzed Carbonyl Additions Under the Conditions of Transfer Hydrogenation
Author: Ryan Lloyd Patman
Publisher:
Total Pages: 336
Release: 2011
Genre:
ISBN:

Download Transition Metal Catalyzed Carbonyl Additions Under the Conditions of Transfer Hydrogenation Book in PDF, ePub and Kindle

The efficient construction of complex organic molecules mandates that an assortment of methods for forming C-C bonds be available to the practicing synthetic chemist. The addition of carbon based nucleophiles to carbonyl compounds represents a broad class of reactions used to achieve this goal. Traditional methodology requires the use of stoichiometrically preformed organometallic reagents as nucleophiles in this type of reaction. However, due to the moisture sensitivity, excessive preactivation and inevitable generation of stoichiometric waste required for the use of these reagents, alternative methods have become a focus of the synthetic organic community. The research presented in this dissertation describes a new class of C-C bond forming reactions enabled through catalytic transfer hydrogenation. Here, the development and implementation of efficient green methods for carbonyl addition employing [pi]-unsaturates as surrogates to preformed organometallic reagents is described. Additionally, this research describes the first systematic studies toward using alcohols as electrophiles in carbonyl allylation, propargylation and vinylation reactions.


Transition Metal-catalyzed Reductive C-C Bond Forming Hydrogenation/transfer Hydrogenation and Applications in the Total Synthesis of (+)-roxaticin

Transition Metal-catalyzed Reductive C-C Bond Forming Hydrogenation/transfer Hydrogenation and Applications in the Total Synthesis of (+)-roxaticin
Author: Soo Bong Han
Publisher:
Total Pages: 860
Release: 2010
Genre:
ISBN:

Download Transition Metal-catalyzed Reductive C-C Bond Forming Hydrogenation/transfer Hydrogenation and Applications in the Total Synthesis of (+)-roxaticin Book in PDF, ePub and Kindle

By simply hydrogenating enones in the presence of aldehydes at ambient temperature and pressure, aldol adducts are generated under neutral conditions in the absence of any stoichiometric byproducts. Using cationic rhodium complexes modified by tri(2-furyl)phosphine, highly syn-diastereoselective reductive aldol additions of vinyl ketones are achieved. Finally, using novel monodentate TADDOL-like phosphonite ligands, the first highly diastereo- and enantioselective reductive aldol couplings of vinyl ketones were devised. These studies, along with other works from our laboratory, demonstrate that organometallics arising transiently in the course of catalytic hydrogenation offer byproduct-free alternatives to preformed organometallic reagents employed in classical carbonyl addition processes. Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles, and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C, O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are achieved in the absence of stoichiometric metallic reagents or stoichiometric chiral modifiers. Moreover, under transfer hydrogenation conditions, primary alcohols function dually as hydrogen donors and aldehyde precursors, enabling enantioselective carbonyl addition directly from the alcohol oxidation level.


Transition Metal Catalyzed C-C Bond Formation Under Transfer Hydrogenation Conditions

Transition Metal Catalyzed C-C Bond Formation Under Transfer Hydrogenation Conditions
Author: Joyce Chi Ching Leung
Publisher:
Total Pages: 902
Release: 2013
Genre:
ISBN:

Download Transition Metal Catalyzed C-C Bond Formation Under Transfer Hydrogenation Conditions Book in PDF, ePub and Kindle

Carbon-carbon bond forming reactions are fundamental transformations for constructing structurally complex organic building blocks, especially in the realm of natural products synthesis. Classical protocols for forming a C-C bond typically require the use of stoichiometrically preformed organometallic reagents, constituting a major drawback for organic synthesis on process scale. Since the emergence of transition metal catalysis in hydrogenation and hydrogenative C-C coupling reactions, atom and step economy have become important considerations in the development of sustainable methods. In the Krische laboratory, our goal is to utilize abundant, renewable feedstocks, so that the reactions can proceed in an efficient and atom-economical manner. Our research focuses on developing new C-C bond forming protocols that transcend the use of stoichiometric, preformed organometallic reagents, in which [pi]-unsaturates can be employed as surrogates to discrete premetallated reagents. Under transition metal catalyzed transfer hydrogenation conditions, alcohols can engage in C-C coupling, avoiding unnecessary redox manipulations prior to carbonyl addition. Stereoselective variants of these reactions are also under extensive investigation to effect stereo-induction by way of chiral motifs found in ligands and counterions. The research presented in this dissertation represents the development of a new class of C-C bond forming transformations useful for constructing synthetic challenging molecules. Development of transfer hydrogenative C-C bond forming reactions in the form of carbonyl additions such as carbonyl allylation, carbonyl propargylation, carbonyl vinylation etc. are discussed in detail. Additionally, these methods avoid the use of stoichiometric chiral allenylmetal, propargylmetal or vinylmetal reagents, respectively, accessing diastereo- and enantioenriched products of carbonyl additions in the absence of stoichiometric organometallic byproducts. By exploiting the atom-economical transfer hydrogenative carbonyl addition protocols using ruthenium and iridium, preparations of important structural motifs that are abundant in natural products, such as allylic alcohols, homoallylic alcohols and homopropargylic alcohols, become more feasible and accessible.


Transition Metal-catalyzed Reductive C-C Bond Formation Under Hydrogenation and Transfer Hydrogenation Conditions

Transition Metal-catalyzed Reductive C-C Bond Formation Under Hydrogenation and Transfer Hydrogenation Conditions
Author: Ming-yu Ngai
Publisher:
Total Pages: 652
Release: 2008
Genre: Chemical bonds
ISBN:

Download Transition Metal-catalyzed Reductive C-C Bond Formation Under Hydrogenation and Transfer Hydrogenation Conditions Book in PDF, ePub and Kindle

Carbon-carbon bond forming reactions are vital to the synthesis of natural products and pharmaceuticals. In 2003, the 200 best selling prescription drugs reported in Med Ad News are all organic compounds. Synthesizing these compounds involves many carbon-carbon bond forming processes, which are not trivial and typically generate large amounts of waste byproducts. Thus, development of an atom economical and environmentally benign carbon-carbon bond forming methodology is highly desirable. Hydrogenation is one of the most powerful catalytic reactions and has been utilized extensively in industry. Although carbon-carbon bond forming reactions under hydrogenation conditions, such as, alkene hydroformylation and the Fischer-Tropsch reaction are known, they are limited to the coupling of unsaturated hydrocarbons to carbon monoxide. Recently, a breakthrough was made by the Krische group, who demonstrated that catalytic hydrogenative C-C bond forming reactions can be extended to the coupling partners other than carbon monoxide. This discovery has led to the development of a new class of carbon-carbon bond forming reactions. Herein, an overview of transition metal-catalyzed reductive couplings of [pi]-unsaturated systems employing various external reductants is summarized in Chapter 1. Chapters 2-4 describe a series of rhodium- and iridium-catalyzed asymmetric hydrogenative couplings of various alkynes to a wide range of imines and carbonyl compounds. These byproduct-free transformations provide a variety of optically enriched allylic amines and allylic alcohols, which are found in numerous natural products, and are used as versatile precursors for the synthesis of many biologically active compounds. Transfer hydrogenation represents another important class of reactions in organic chemistry. This process employs hydrogen sources other than gaseous dihydrogen, such as isopropanol. The Krische group succeeded in developing a new family of transfer hydrogenative carbon-carbon bond formation reactions. Chapter 5 presents two novel ruthenium- and iridium-catalyzed transfer hydrogenative carbonyl allylation reactions. The catalytic system employing iridium complexes enables highly enantioselective carbonyl allylation from both the alcohol and aldehyde oxidation level. These systems define a departure from the use of preformed organometallic reagents in carbonyl additions that transcends the boundaries of oxidation level.


Development of New Transition Metal Catalyzed C-C Bond Forming Reactions and Their Application Toward Natural Product Synthesis

Development of New Transition Metal Catalyzed C-C Bond Forming Reactions and Their Application Toward Natural Product Synthesis
Author: Abbas Hassan
Publisher:
Total Pages: 670
Release: 2011
Genre:
ISBN:

Download Development of New Transition Metal Catalyzed C-C Bond Forming Reactions and Their Application Toward Natural Product Synthesis Book in PDF, ePub and Kindle

In Michael J. Krische research group we are developing new transition metal catalyzed Carbon-Carbon (C-C) forming reactions focusing on atom economy and byproduct free, environmental friendly approaches. We have developed a broad family of C-C bond forming hydrogenations with relative and absolute stereocontrol which provide an alternative to stoichiometric organometallic reagents in certain carbonyl and imine additions. Inspiring from the group work my goal was to develop new reactions, extend the scope of our group chemistry and their application towards synthesis of biologically active natural products. I have been part of enantioselective Rh catalyzed Aldol reaction of vinyl ketones to different aldehydes. Also, we have found that iridium catalyzed transfer hydrogenation of allylic acetates in the presence of aldehydes or alcohols results in highly enantioselective carbonyl allylation under the conditions of transfer hydrogenative. Based on this reactivity a concise enantio- and diastereoselective synthesis of 1,3-polyols was achieved via iterative chain elongation and bidirectional iterative asymmetric allylation was performed, which enables the rapid assembly of 1,3-polyol substructures with exceptional levels of stereocontrol. The utility of this approach stems from the ability to avoid the use of chirally modified allylmetal reagents, which require multistep preparation, and the ability to perform chain elongation directly from the alcohol oxidation level. This approach was utilized for the total synthesis of (+)-Roxaticin from 1,3-propanediol in 20 longest linear steps and a total number of 29 manipulations. Further, advancements were made in iridium catalyzed C-C bond formation under transfer hydrogenation. While methallyl acetate does not serve as an efficient allyl donor, the use of more reactive leaving group in methallyl chloride compensate for the shorter lifetime of the more highly substituted olefin [pi]-complex. Based on this insight into the requirements of the catalytic process, highly enantioselective Grignard-Nozaki-Hiyama methallylation is achieved from the alcohol or aldehyde oxidation levels. Also, a catalytic method for enantioselective vinylogous Reformatsky- type aldol addition was developed in which asymmetric carbonyl addition occurs with equal facility from the alcohol or aldehyde oxidation level. Good to excellent levels of regioselectivity and uniformly high levels of enantioselectivity were observed across a range of alcohols and aldehydes.


Transition Metal-catalyzed Carbon-carbon Bond Formation Utilizing Transfer Hydrogenation

Transition Metal-catalyzed Carbon-carbon Bond Formation Utilizing Transfer Hydrogenation
Author: Timothy Patrick Montgomery
Publisher:
Total Pages: 1092
Release: 2015
Genre:
ISBN:

Download Transition Metal-catalyzed Carbon-carbon Bond Formation Utilizing Transfer Hydrogenation Book in PDF, ePub and Kindle

A central tenant of organic synthesis is the construction of carbon-carbon bonds. One of the traditional methods for carrying out such transformations is that of carbonyl addition. Unfortunately, traditional carbonyl addition chemistry suffers various drawbacks: preactivation, moisture sensitivity, and the generation of stoichiometric organometallic waste. The research presented in this dissertation focuses on the development of methods that make use of nucleophile-electrophile pairs generated in situ via transfer hydrogenation, which allow the formation of carbonyl or imine addition products from the alcohol or amine oxidation level; streamlining the construction of complex molecules from simple, readily available starting materials. Additionally, studies toward the total synthesis of the fibrinogen receptor inhibitor tetrafibricin, utilizing the methods developed in catalytic carbon-carbon bond formation through the addition, transfer or removal of hydrogen, are presented.


Transition Metal Catalyzed Reductive Couplings Under Hydrogenative and Transfer Hydrogenative Conditions

Transition Metal Catalyzed Reductive Couplings Under Hydrogenative and Transfer Hydrogenative Conditions
Author: Vanessa Monet Williams
Publisher:
Total Pages: 390
Release: 2010
Genre:
ISBN:

Download Transition Metal Catalyzed Reductive Couplings Under Hydrogenative and Transfer Hydrogenative Conditions Book in PDF, ePub and Kindle

Environmental concerns have birthed an awareness of how we conduct ourselves as citizens of this planet. To reduce environmental impact, we have learned that we must be responsible stewards in all ranges of life: from buying locally grown food to how scientific research and industrial processes are executed. In the realm of chemical research, "green chemistry" has initiated the development of new, sustainable methods that make use of atom economy, step economy, and utilize renewable materials to minimize waste and production of toxic by-products. The formation of carbon-carbon bonds lies at the very heart of organic synthesis, and traditional methods for forming such bonds generally require the use of at least one stoichiometrically preformed organometallic reagent. This corresponds to at least one equivalent of metallic waste byproduct. The in situ formation of alkyl metal nucleophiles for carbonyl additions via hydrogenation of [pi]-unsaturates represents an alternative to use of preformed organometallic reagents. Comprising nearly 90% of the atoms in the universe, hydrogen is vastly abundant and very cheap. The Krische group seeks to contribute new technologies which make use of catalytic hydrogenation and transfer hydrogenation in the reductive coupling of basic chemical feedstocks.


Transition-metal-catalyzed C-C Bonds Formation Via Transfer Hydrogenation

Transition-metal-catalyzed C-C Bonds Formation Via Transfer Hydrogenation
Author: Gang Wang (Ph. D.)
Publisher:
Total Pages: 684
Release: 2017
Genre:
ISBN:

Download Transition-metal-catalyzed C-C Bonds Formation Via Transfer Hydrogenation Book in PDF, ePub and Kindle

Redox-triggered carbonyl addition via transfer hydrogenation, which enables direct primary alcohol C-H functionalization to form C-C bond, avoids usage of premetalated reagents or discrete alcohol to aldehyde redox reactions. Moreover, step-economy could be greatly improved by site-selective transformations of polyfunctional molecules due to bypassing the need to install and remove protecting groups. However, the redox site-selective transformations still pose a significant challenge in the area of synthetic organic chemistry. Efforts have been focused on the development of iridium catalyzed transfer hydrogenative coupling reactions of primary alcohols with different allyl donors through carbonyl addition in a site-selective manner as well as ruthenium catalyzed regioselective hydrohydroxyalkylation of primary alcohols with a basic feedstock-styrene. Additionally, studies towards the total synthesis of type I polyketide natural product (+)-SCH 351448 in the most concise route is presented.


Transition Metal Catalyzed Redox Triggered C–C Bond Forming Reactions of Alcohols Via Transfer Hydrogenation

Transition Metal Catalyzed Redox Triggered C–C Bond Forming Reactions of Alcohols Via Transfer Hydrogenation
Author: Boyoung Park
Publisher:
Total Pages: 712
Release: 2016
Genre:
ISBN:

Download Transition Metal Catalyzed Redox Triggered C–C Bond Forming Reactions of Alcohols Via Transfer Hydrogenation Book in PDF, ePub and Kindle

Carbonyl addition is one of the fundamental reactions forming C–C bonds in organic chemistry to construct structurally complex organic molecules, in particular natural products, from small molecules. For this useful carbonyl addition, transition metal catalyzed redox-triggered C–C bond forming reactions of alcohols have been developed via transfer hydrogenation. Combined redox events are more efficient in terms of step- and atom-economy by delivering nucleophile-electrophile pairs in situ from [pi]-unsaturates and alcohols, respectively. Furthermore, transition metal catalyzed redox-triggered C–C couplings bypass the need of stoichiometric (organo)metallic reagents. This dissertation shows the development of new methodologies for this goal including prenylation, vinylation, alkylation and allylation using various ruthenium, osmium and iridium catalysts.


Asymmetric Organocatalysis Combined with Metal Catalysis

Asymmetric Organocatalysis Combined with Metal Catalysis
Author: Bruce A. Arndtsen
Publisher: Springer Nature
Total Pages: 211
Release: 2020-04-24
Genre: Science
ISBN: 3030438511

Download Asymmetric Organocatalysis Combined with Metal Catalysis Book in PDF, ePub and Kindle

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.The chapter "Enamine/Transition Metal Combined Catalysis: Catalytic Transformations Involving Organometallic Electrophilic Intermediates" is available open access under a CC BY 4.0 License via link.springer.com.