Transcription Factors In The Nervous System PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Transcription Factors In The Nervous System PDF full book. Access full book title Transcription Factors In The Nervous System.

Transcription Factors in the Nervous System

Transcription Factors in the Nervous System
Author: Gerald Thiel
Publisher: John Wiley & Sons
Total Pages: 505
Release: 2006-05-12
Genre: Science
ISBN: 3527607366

Download Transcription Factors in the Nervous System Book in PDF, ePub and Kindle

This first book to cover neural development, neuronal survival and function on the genetic level outlines promising approaches for novel therapeutic strategies in fighting neurodegenerative disorders, such as Alzheimer's disease. Focusing on transcription factors, the text is clearly divided into three sections devoted to transcriptional control of neural development, brain function and transcriptional dysregulation induced neurological diseases. With a chapter written by Nobel laureate Eric Kandel, this is essential reading for neurobiologists, geneticists, biochemists, cell biologists, neurochemists and molecular biologists.


Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction

Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction
Author: L. Kaczmarek
Publisher: Gulf Professional Publishing
Total Pages: 400
Release: 2002-07
Genre: Medical
ISBN: 9780444508355

Download Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction Book in PDF, ePub and Kindle

This book brings together information about the most widely studied IEG/ITF involved in a variety of neuronal activation. Written by a prominent group of authors, it attempts to unravel the complexity of the phenomena of gene expression in the central nervous system.


Immediate-Early Genes in the Central Nervous System

Immediate-Early Genes in the Central Nervous System
Author: T.R. Tölle
Publisher: Springer Science & Business Media
Total Pages: 171
Release: 2012-12-06
Genre: Science
ISBN: 3642795625

Download Immediate-Early Genes in the Central Nervous System Book in PDF, ePub and Kindle

Immediate-early genes are believed to be involved in the neuron's ability to con vert short-term synaptic stimulation into long-lasting responses and thus contribute to the adaptive alterations involved in neuronal plasticity. Cellular immediate-early genes share a close structural homology with some viral oncogenes. Recent advances in cellular biology have identified the activation and deactivation of immediate-early genes as molecular mechanisms to control regulated and deregulated growth, cellular differentiation and development. In this view immediate-early genes may function as third messengers in a stimulus transcription cascade transferring extracellular information into changes in target gene transcription, thereby changing the phenotype of neurons. Immediate-Early Genes in the Central Nervous System provides a comprehensive up-to-date overview of current methodology in the research of immediate-early genes and includes a wide range of neurobiological topics, such as regeneration, memory formation, epilepsia and nociception. The contributors to this book have been selected from among the leading experts in their field of research. T.R. TOLLE J. SCHADRACK W. ZIEGLGANSBERGER Contents Immediate-early genes -how immmediate and why early? G./. Evan .............................................. . Immediate-early gene activation as a window on mechanism in the nervous system S.P. Hunt, L.A. McNaughton, R. Jenkins, and W. Wisden. . . . . . . . . .. . . . 18 of immediate-early genes during Differential expression synaptic plasticity, seizures and brain injury suggests specific functions for these molecules in brain neurons M. Dragunow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 35 . . . . . . . . . .


Transcriptional Control of Neural Crest Development

Transcriptional Control of Neural Crest Development
Author: Brian Nelms
Publisher: Biota Publishing
Total Pages: 246
Release: 2010-02-01
Genre: Science
ISBN: 1615040498

Download Transcriptional Control of Neural Crest Development Book in PDF, ePub and Kindle

The neural crest is a remarkable embryonic population of cells found only in vertebrates and has the potential to give rise to many different cell types contributing throughout the body. These derivatives range from the mesenchymal bone and cartilage comprising the facial skeleton, to neuronal derivatives of the peripheral sensory and autonomic nervous systems, to melanocytes throughout the body, and to smooth muscle of the great arteries of the heart. For these cells to correctly progress from an unspecifi ed, nonmigratory population to a wide array of dynamic, differentiated cell types—some of which retain stem cell characteristics presumably to replenish these derivatives—requires a complex network of molecular switches to control the gene programs giving these cells their defi ning structural, enzymatic, migratory, and signaling capacities. This review will bring together current knowledge of neural crest-specifi c transcription factors governing these progressions throughout the course of development. A more thorough understanding of the mechanisms of transcriptional control in differentiation will aid in strategies designed to push undifferentiated cells toward a particular lineage, and unraveling these processes will help toward reprogramming cells from a differentiated to a more naive state. Table of Contents: Introduction / AP Genes / bHLH Genes / ETS Genes / Fox Genes / Homeobox Genes / Hox Genes / Lim Genes / Pax Genes / POU Domain Genes / RAR/RXR Genes / Smad Genes / Sox Genes / Zinc Finger Genes / Other Miscellaneous Genes / References / Author Biographies


Transcription Regulation - Brain Development and Homeostasis - A Finely Tuned and Orchestrated Scenario in Physiology and Pathology, Volume II

Transcription Regulation - Brain Development and Homeostasis - A Finely Tuned and Orchestrated Scenario in Physiology and Pathology, Volume II
Author: Estela Maris Muñoz
Publisher: Frontiers Media SA
Total Pages: 169
Release: 2023-10-03
Genre: Science
ISBN: 2832533817

Download Transcription Regulation - Brain Development and Homeostasis - A Finely Tuned and Orchestrated Scenario in Physiology and Pathology, Volume II Book in PDF, ePub and Kindle

A finely tuned regulation of gene expression is essential for shaping the nervous system and for maintaining its homeostasis throughout life. Disruptions in gene regulation can impact brain development and physiology in ways that contribute to diverse pathologies. The master orchestrators of gene activity in the nucleus are transcription factors, proteins that recognize and bind to specific DNA motifs in regulatory regions and drive changes in gene expression. Transcription factors act with the help of other co-factor proteins, including components of the Mediator complex, histone modifying enzymes, chromatin modelers, and DNA methylases. In addition, transcription factor activity in the nervous system can be modulated by extracellular signals, including growth factors, hormones, neuropeptides and neurotransmitters that activate specific receptors and intracellular transduction pathways. An in-depth understanding of the mechanisms of transcription regulation is needed in order to better describe how each element, from genes to cells, defines and maintains identities and functionalities in the healthy and diseased brain. This Research Topic is oriented to developing an integrative view about transcription regulation within the nervous system, focusing on developmental and homeostatic processes, dysregulation in functionality and expression levels and consequent associated pathologies such as neurodevelopmental disorders, brain tumors, and neurodegenerative diseases. Transcription regulation investigations will specifically focus on transcription factors that belong to the bHLH (e.g. NeuroD), homeobox (e.g. Islet, Pax, Rax, and Lhx) and CREB families, and on their roles over defined nervous system areas: cerebral cortex, thalamic and hypothalamic areas, interacting with the developing brain.


Molecular Neurotoxicology

Molecular Neurotoxicology
Author: Nasser H. Zawia
Publisher: CRC Press
Total Pages: 236
Release: 2004-04-27
Genre: Medical
ISBN: 0203503317

Download Molecular Neurotoxicology Book in PDF, ePub and Kindle

Molecular Neurotoxicology: Environmental Agents and Transcription-Transduction Coupling deals with changes in gene expression following exposure to neurotoxicants, as well as deciphering signal transduction or transcription coupling that is altered by the same exposure. Until now, little has been published on the topic in one reference, and toxicol


Transcriptional and Epigenetic Regulation of Axon Regeneration

Transcriptional and Epigenetic Regulation of Axon Regeneration
Author: Marcus Mahar
Publisher:
Total Pages: 146
Release: 2019
Genre: Electronic dissertations
ISBN:

Download Transcriptional and Epigenetic Regulation of Axon Regeneration Book in PDF, ePub and Kindle

The mammalian nervous system is a highly intricate network consisting of over a hundred billion specialized cells called neurons. One unique characteristic of neurons is their highly polarized morphology; unlike other cells, neurons project long axonal extensions. These structures allow them to connect and communicate with not only other neurons, but also various cell types in the body and give rise to all motor, sensory, and higher order function. Because axons can extend up to three feet, they are also vulnerable to injury from sources such as traumatic brain and spinal cord injuries, stroke, or neurodegenerative diseases. Indeed, patients who have experienced these injuries often suffer debilitating, irreversible loss of function. Interestingly, whereas neurons which reside in the central nervous system are incapable of regenerating after axon injury, neurons of the peripheral nervous system activate a robust pro-regenerative response capable of promoting long distance regeneration and functional recovery. The molecular mechanisms which underlie this pro-regenerative response may provide key insights into how a pro-regenerative response could be stimulated in injured central nervous system neurons. A comprehensive overview of the known molecular mechanisms involved in this response is reviewed in Chapter 1.As mammals age, the synaptic connections between neurons mature. Following axon injury in peripheral nervous system neurons, the genes involved in synaptic function are turned off and genes required for inducing axon growth are activated. These widespread epigenetic and transcriptional changes require a coordinated effort of epigenetic and transcriptional regulators including epigenetic modifiers, transcription factors, and microRNAs. In Chapter 2, we demonstrated that these changes are, in part, a result of the rapid downregulation of microRNA-9 which occurs following axon injury. At baseline in adult peripheral nervous system neurons, microRNA-9 is highly expressed and actively represses various genes including REST and UHRF1. When microRNA-9 expression decreases following injury, both REST and UHRF1 increase with UHRF1also repressing REST and restricting REST expression to a tight temporal window. During this time, REST binds to and represses various genes involved in synaptic function such as ion channels; a process necessary for peripheral nervous system regeneration. This complete published work can be found in Chapter 2.In coordination with epigenetic modifiers such as UHRF1, various transcription factors are activated following axon injury and promote the expression of pro-growth genes. Various studies have worked to identify the transcription factors involved in this process as exogenous overexpression of transcription factors has been shown to confer specific phenotypes of interest, such as the conversion of one cell type to another, when the correct combination of transcription factors is manipulated. To further this work, in Chapter 3 I used bioinformatics analysis to identify 27 transcription factors putatively involved in the establishment of the pro-regenerative response. Using two complimentary in vitro screens, determined which transcription factors were both necessary for peripheral nervous system axon regeneration and sufficient to drive central nervous system axon regeneration. By pairing these results with network-based bioinformatics analysis, we identified Creb1 as a transcription factor which sits atop the pro-regenerative gene regulatory network. Follow-up studies in which we overexpressed Creb1during optic nerve regeneration demonstrated Creb1 is sufficient to promote central nervous system axon regeneration in vivo. This work provides exciting new insight into the various transcription factors regulating this response as well as their putative genetic relationships.