Topics In Atomic Collision Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Topics In Atomic Collision Theory PDF full book. Access full book title Topics In Atomic Collision Theory.

Topics in Atomic Collision Theory

Topics in Atomic Collision Theory
Author: Sydney Geltman
Publisher: Academic Press
Total Pages: 256
Release: 2013-10-22
Genre: Science
ISBN: 148327702X

Download Topics in Atomic Collision Theory Book in PDF, ePub and Kindle

Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessarily in the order of decreasing mathematical tractability. The topics and methods selected were those which contributed most significantly to the understanding of the physics and the calculation of reliable cross sections. The attempt has been made to treat each of the sections in a complete and self-contained manner. The limited scope of this book has unfortunately made it necessary to omit discussion of many promising methods.


Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules
Author: S.P. Khare
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2012-12-06
Genre: Science
ISBN: 1461506115

Download Introduction to the Theory of Collisions of Electrons with Atoms and Molecules Book in PDF, ePub and Kindle

An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.


Polarization and Correlation Phenomena in Atomic Collisions

Polarization and Correlation Phenomena in Atomic Collisions
Author: Vsevolod V. Balashov
Publisher: Springer Science & Business Media
Total Pages: 258
Release: 2000-04-30
Genre: Science
ISBN: 9780306462665

Download Polarization and Correlation Phenomena in Atomic Collisions Book in PDF, ePub and Kindle

"The book provides a concise description of the density matrix and statistical tensor formalism and presents a general approach to the description of angular correlation and polarization phenomena. It illustrate an application of the angular momentum technique to a broad variety of atomic processes.".


Pure and applied physics

Pure and applied physics
Author: Sydney Geltman
Publisher:
Total Pages: 247
Release: 1969
Genre:
ISBN:

Download Pure and applied physics Book in PDF, ePub and Kindle


Atom - Molecule Collision Theory

Atom - Molecule Collision Theory
Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
Total Pages: 785
Release: 2013-11-11
Genre: Science
ISBN: 1461329132

Download Atom - Molecule Collision Theory Book in PDF, ePub and Kindle

The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.


R-Matrix Theory of Atomic Collisions

R-Matrix Theory of Atomic Collisions
Author: Philip George Burke
Publisher: Springer Science & Business Media
Total Pages: 750
Release: 2011-03-28
Genre: Science
ISBN: 3642159311

Download R-Matrix Theory of Atomic Collisions Book in PDF, ePub and Kindle

Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.


Theory of atomic collisions

Theory of atomic collisions
Author: Nevill Francis Mott
Publisher:
Total Pages: 858
Release: 1965
Genre: Atoms
ISBN:

Download Theory of atomic collisions Book in PDF, ePub and Kindle


Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions
Author: Philip G. Burke
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 2013-06-29
Genre: Science
ISBN: 1489915672

Download Theory of Electron—Atom Collisions Book in PDF, ePub and Kindle

The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.


Fundamental Processes in Atomic Collision Physics

Fundamental Processes in Atomic Collision Physics
Author: H. Kleinpoppen
Publisher: Springer Science & Business Media
Total Pages: 783
Release: 2012-12-06
Genre: Science
ISBN: 1461321255

Download Fundamental Processes in Atomic Collision Physics Book in PDF, ePub and Kindle

The Proceedings of the Advanced study Institute on Fundamental Processes in Atomic Collision Physics (Santa Flavia, Italy, September 10-21, 1984) are dedicated to the memory of Sir Harrie r-1assey, whose scientific achievements and life are reviewed herein by Sir David Bates. At the first School on the above topic (Maratea, September 1983, Volume 103 in this series), Harrie Massey presented the introductory lectures, summarized the entire lecture program, and presented an outlook on future developments in atomic collision physics. In an after-dinner speech, Massey recalled personal reminiscences and historical events with regard to atomic collision physics, to which he had contributed by initiating pioneering work and by stimulating and surveying this branch of physics over a period of almost six decades. Participants in the Maratea School will always remember Harrie Massey as a charming and wonderful person who was most pleased to discuss with everyone--students, postdoctorals, and senior scientists--any topic in atomic collision physics. Harrie Massey was a member of the Scientific Advisory Committee of the 1984 Santa Flavia School. Before his death he expressed his interest in attending this second School devoted to the presentation of recent developments and highlights in atomic collision physics. It is the desire of all authors to honor Harrie Massey with their contributions in these Proceedings.


Collisions of Electrons with Atoms and Molecules

Collisions of Electrons with Atoms and Molecules
Author: G.F. Drukarev
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2012-12-06
Genre: Science
ISBN: 1461317797

Download Collisions of Electrons with Atoms and Molecules Book in PDF, ePub and Kindle

This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.