Time Optimal Trajectory Planning By Variation Of Path And Robot Location PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Time Optimal Trajectory Planning By Variation Of Path And Robot Location PDF full book. Access full book title Time Optimal Trajectory Planning By Variation Of Path And Robot Location.

Optimal Trajectory Planning for Mobile Robots

Optimal Trajectory Planning for Mobile Robots
Author: Xiang Ma
Publisher:
Total Pages: 318
Release: 2008
Genre:
ISBN:

Download Optimal Trajectory Planning for Mobile Robots Book in PDF, ePub and Kindle

Abstract: Given growing emphasis on robot autonomy, the problem of planning a trajectory for these autonomous systems in a complex environment has become increasingly important. The objective of this research is to solve trajectory generation and optimization problems for mobile robot systems with both single and multiple goals. Considering the complexity of general trajectory planning problems, we concentrate mainly on two dynamic models: a holonomic system where velocity is a control variable and a nonholonomic system proposed by Dubins with constant velocity and constrained turning radius. For the simple holonomic model, we focus on computation of optimal trajectories with complex objective functions. We use a stochastic control framework to obtain characterizations of optimal trajectories as solutions of Hamilton-Jacobi-Bellman equations. Based on either upwind schemes or value iteration methods, we develop and evaluate alternative numerical methods for both isotropic (velocity-independent) and anisotropic (velocity-dependent) cost models. For the Dubins' vehicle model, we extend the results of Dubins and others to solve for minimum-time trajectories with diverse path and terminal constraints, characterizing solutions using Pontryagin's Maximum Principle. A direct application of these local shortest-path solutions is the Dubins' Traveling Salesman problem (DTSP), where the goal is to find the shortest trajectory for a Dubins' vehicle given a number of locations. We extend our analytic solutions to two-point and three-point Dubins' shortest path problems to obtain a receding horizon algorithm that outperforms alternative algorithms proposed in the literature when the visiting order is known. We also combine these algorithms with existing TSP heuristics to obtain improved algorithms when the order is not known. We also studied trajectory planning for Dubins' vehicles in the presence of moving obstacles. For stationary obstacles and holonomic vehicles, probabilistic algorithms such as rapidly-exploring random trees (RRTs) can provide guarantees of finding a path to a goal. We developed a variation of RRTs for time-varying obstacles and Dubins' dynamics. We prove probabilistic completeness for this algorithm, establishing that a path will be found if one exists. We also compared our approach with an alternative, the probabilistic roadmap algorithm, and established that our algorithm yields improvements for these problems.


Planning Algorithms

Planning Algorithms
Author: Steven M. LaValle
Publisher: Cambridge University Press
Total Pages: 844
Release: 2006-05-29
Genre: Computers
ISBN: 9780521862059

Download Planning Algorithms Book in PDF, ePub and Kindle

Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.


Modern Robotics

Modern Robotics
Author: Kevin M. Lynch
Publisher: Cambridge University Press
Total Pages: 545
Release: 2017-05-25
Genre: Computers
ISBN: 1107156300

Download Modern Robotics Book in PDF, ePub and Kindle

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.


Trajectory Planning for Automatic Machines and Robots

Trajectory Planning for Automatic Machines and Robots
Author: Luigi Biagiotti
Publisher: Springer Science & Business Media
Total Pages: 515
Release: 2008-10-23
Genre: Technology & Engineering
ISBN: 3540856293

Download Trajectory Planning for Automatic Machines and Robots Book in PDF, ePub and Kindle

This book deals with the problems related to planning motion laws and t- jectories for the actuation system of automatic machines, in particular for those based on electric drives, and robots. The problem of planning suitable trajectories is relevant not only for the proper use of these machines, in order to avoid undesired e?ects such as vibrations or even damages on the mech- ical structure, but also in some phases of their design and in the choice and sizing of the actuators. This is particularly true now that the concept of “el- tronic cams” has replaced, in the design of automatic machines, the classical approach based on “mechanical cams”. The choice of a particular trajectory has direct and relevant implications on several aspects of the design and use of an automatic machine, like the dimensioning of the actuators and of the reduction gears, the vibrations and e?orts generated on the machine and on the load, the tracking errors during the motion execution. For these reasons, in order to understand and appreciate the peculiarities of the di?erent techniques available for trajectory planning, besides the ma- ematical aspects of their implementation also a detailed analysis in the time and frequency domains, a comparison of their main properties under di?erent points of view, and general considerations related to their practical use are reported.


Modeling, Identification and Control of Robots

Modeling, Identification and Control of Robots
Author: W. Khalil
Publisher: Butterworth-Heinemann
Total Pages: 503
Release: 2004-07-01
Genre: Computers
ISBN: 0080536611

Download Modeling, Identification and Control of Robots Book in PDF, ePub and Kindle

Written by two of Europe’s leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots. · World class authority· Unique range of coverage not available in any other book· Provides a complete course on robotic control at an undergraduate and graduate level


Time Optimal Trajectory Generation for a Differential Drive Robot

Time Optimal Trajectory Generation for a Differential Drive Robot
Author: Subramaniam Iyer
Publisher:
Total Pages: 82
Release: 2009
Genre:
ISBN:

Download Time Optimal Trajectory Generation for a Differential Drive Robot Book in PDF, ePub and Kindle

Trajectory generation or motion planning is one of the critical steps in the control design for autonomous robots. The problem of shortest trajectory or time optimal trajectory has been a topic of active research. In this, thesis Sequential Linear Programming algorithm (SLP) and Global Local Mapping (Glomap) are the two methods used to solve the optimal trajectory generation problem for a differential drive robot. The time optimal path planning problem is posed as a linear programming problem which is solved using the SLP algorithm. In the Glomap approach the time domain is broken into smaller domains. The trajectory is generated for each local domain and then merged into a global trajectory. In both these methods potential functions are used to represent the obstacles in the configuration space. The trajectory generation methods are implemented in Matlab and validated on a robotic platform. Though the methods mentioned here are used for path planning for a differential drive robot they may be used for other systems with little or no modifications.


On the Time-optimal Trajectory Planning Along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators

On the Time-optimal Trajectory Planning Along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators
Author: Pedro Reynoso Mora
Publisher:
Total Pages: 115
Release: 2013
Genre:
ISBN:

Download On the Time-optimal Trajectory Planning Along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators Book in PDF, ePub and Kindle

In this dissertation, we study two important subjects in robotics: (i) time-optimal trajectory planning, and (ii) optimal control synthesis methodologies for trajectory tracking. In the first subject, we concentrate on a rather specific sub-class of problems, the time-optimal trajectory planning along predetermined geometric paths. In this kind of problem, a purely geometric path is already known, and the task is to find out how to move along this path in the shortest time physically possible. In order to generate the true fastest solutions achievable by the actual robot manipulator, the complete nonlinear dynamic model should be incorporated into the problem formulation as a constraint that must be satisfied by the generated trajectories and feedforward torques. This important problem was studied in the 1980s, with many related methods for addressing it based on the so-called velocity limit curve and variational methods. Modern formulations directly discretize the problem and obtain a large-scale mathematical optimization problem, which is a prominent approach to tackle optimal control problems that has gained popularity over variational methods, mainly because it allows to obtain numerical solutions for harder problems. We contribute to the referred problem of time-optimal trajectory planning, by extending and improving the existing mathematical optimization formulations. We successfully incorporate the complete nonlinear dynamic model, including viscous friction because for the fastest motions it becomes even more significant than Coulomb friction; of course, Coulomb friction is likewise accommodated for in our formulation. We develop a framework that guarantees exact dynamic feasibility of the generated time-optimal trajectories and feedforward torques. Our initial formulation is carefully crafted in a rather specific manner, so that it allows to naturally propose a convex relaxation that solves exactly the original problem formulation, which is non-convex and therefore hard to solve. In order to numerically solve the proposed formulation, a discretization scheme is also developed. Unlike traditional and modern formulations, we motivate the incorporation of additional criteria to our original formulation, with simulation and experimental studies of three crucial variables for a 6-axis industrial manipulator. Namely, the resulting applied torques, the readings of a 3-axis accelerometer mounted at the manipulator end-effector, and the detrimental effects on the tracking errors induced by pure time-optimal solutions. We therefore emphasize the significance of penalizing a measure of total jerk and of imposing acceleration constraints. These two criteria are incorporated without destroying convexity. The final formulation generates near time-optimal trajectories and feedforward torques with traveling times that are slightly larger than those of pure time-optimal solutions. Nevertheless, the detrimental effects induced by pure time-optimality are eliminated. Experimental results on a 6-axis industrial manipulator confirm that our formulation generates the fastest solutions that can actually be implemented in the real robot manipulator. Following the work done on near time-optimal trajectories, we explore two controller synthesis methodologies for trajectory tracking, which are more suitable to achieve trajectory-tracking under such fast trajectories. In the first approach, we approximate the discrete-time nonlinear dynamics of robot manipulators, moving along the state-reference trajectory, as an affine time-varying (ATV) dynamical system in discrete-time. Therefore, the problem of trajectory tracking for robot manipulators is posed as a linear quadratic (LQ) optimal control problem for a class of discrete-time ATV dynamical systems. Then, an ATV control law to achieve trajectory tracking on the ATV system is developed, which uses LQ methods for linear time-varying (LTV) systems. Since the ATV dynamical system approximates the nonlinear robot dynamics along the state-reference trajectory, the resulting time-varying control law is suitable to achieve trajectory tracking on the robot manipulator. The ATV control law is implemented in experiments for the 6-axis industrial manipulator, tracking the near time-optimal trajectory. Experimental results verify the better performance achieved with the ATV control law, but also expose its shortcomings. The second approach to address trajectory tracking is related in spirit, but different in crucial aspects, which ultimately endow this approach with its superior features. In this novel approach, the highly nonlinear dynamic model of robot manipulators, moving along a state-reference trajectory, is approximated as a class of piecewise affine (PWA) dynamical systems. We propose a framework to construct the referred PWA system, which consists in: (i) choosing strategic operating points on the state-reference trajectory with their respective (local) linearized system dynamics, (ii) constructing ellipsoidal regions centered at the operating points, whose purpose is to facilitate the scheduling strategy of controller gains designed for each local dynamics. Likewise, in order to switch controller gains as the robot state traverses in the direction of the state-reference trajectory, a simple scheduling strategy is proposed. The controller synthesis near each operating point is an LQR-type that takes into account the local coupled dynamics. The referred PWA control law is implemented in experiments for the 6-axis manipulator tracking the near time-optimal trajectory. The experimental results show the feasibility and superiority of the PWA control law over the typical PID controller and the ATV control law.