Thermodynamics And The Free Energy Of Chemical Substances PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Thermodynamics And The Free Energy Of Chemical Substances PDF full book. Access full book title Thermodynamics And The Free Energy Of Chemical Substances.

Thermodynamics and the Free Energy of Chemical Substances

Thermodynamics and the Free Energy of Chemical Substances
Author: Gilbert Newton Lewis
Publisher:
Total Pages: 690
Release: 1923
Genre: Chemistry, Physical and theoretical
ISBN:

Download Thermodynamics and the Free Energy of Chemical Substances Book in PDF, ePub and Kindle

The scope of thermodynamics. Definitions; the concept of equilibrium. Conventions and mathematical methods. Solutions. The first law of thermodynamics and the concept of energy. The fugacity. Application of the second law to solutions. The perfect solution. The laws of the dilute solution. Systems involving variables other than pressure, temperature and composition. A useful function, called the activity, and its application to solutions. Change of activity with the temperature, and the calculation of activity from freezing points. The standard change of free energy; the equilibrium constant. Solutions of electrolytes. The activity of strong electrolytes. The activity of electrolytes from freezing point data, and tables of activity coefficients. Activity coefficient in mixed electrolytes; the principle of the ionic strength; the activity of individual ions. The galvanic cell. Single potentials; standard electrode potentials of the elements. The third law of thermodynamics. The entropy of monatomic gases and a table of atomic entropies. Introduction to systematic free energy calculations: the free energy of elementary hydrogen and metallic hydrides. Oxygen and its compouns with hydrogen and with some metals. Chlorine and its compouns. Bromine and its compounds. Iodine and its compounds. Nitrogen compounds. Carbon and some of its compounds. Compounds of carbon and nitrogen. Table of free energies; and examples illustrating its use. Conversion table for mol fractions, mol ratios and molities. Some useful numerical factors. Coefficients employed in converting activity, equilibrium constant and free energy from one temperature to another. Publications by the authrs, pertaining to thermodynamics.


Chemistry 2e

Chemistry 2e
Author: Paul Flowers
Publisher:
Total Pages: 0
Release: 2019-02-14
Genre: Chemistry
ISBN: 9781947172623

Download Chemistry 2e Book in PDF, ePub and Kindle

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.


Chemical Thermodynamics: Advanced Applications

Chemical Thermodynamics: Advanced Applications
Author: J. Bevan Ott
Publisher: Elsevier
Total Pages: 465
Release: 2000-06-16
Genre: Science
ISBN: 0080500994

Download Chemical Thermodynamics: Advanced Applications Book in PDF, ePub and Kindle

This book is an excellent companion to Chemical Thermodynamics: Principles and Applications. Together they make a complete reference set for the practicing scientist. This volume extends the range of topics and applications to ones that are not usually covered in a beginning thermodynamics text. In a sense, the book covers a "middle ground" between the basic principles developed in a beginning thermodynamics textbook, and the very specialized applications that are a part of an ongoing research project. As such, it could prove invaluable to the practicing scientist who needs to apply thermodynamic relationships to aid in the understanding of the chemical process under consideration. The writing style in this volume remains informal, but more technical than in Principles and Applications. It starts with Chapter 11, which summarizes the thermodynamic relationships developed in this earlier volume. For those who want or need more detail, references are given to the sections in Principles and Applications where one could go to learn more about the development, limitations, and conditions where these equations apply. This is the only place where Advanced Applications ties back to the previous volume. Chapter 11 can serve as a review of the fundamental thermodynamic equations that are necessary for the more sophisticated applications described in the remainder of this book. This may be all that is necessary for the practicing scientist who has been away from the field for some time and needs some review. The remainder of this book applies thermodynamics to the description of a variety of problems. The topics covered are those that are probably of the most fundamental and broadest interest. Throughout the book, examples of "real" systems are used as much as possible. This is in contrast to many books where "generic" examples are used almost exclusively. A complete set of references to all sources of data and to supplementary reading sources is included. Problems are given at the end of each chapter. This makes the book ideally suited for use as a textbook in an advanced topics course in chemical thermodynamics. An excellent review of thermodynamic principles and mathematical relationships along with references to the relevant sections in Principles and Applications where these equations are developed Applications of thermodynamics in a wide variety of chemical processes, including phase equilibria, chemical equilibrium, properties of mixtures, and surface chemistry Case-study approach to demonstrate the application of thermodynamics to biochemical, geochemical, and industrial processes Applications at the "cutting edge" of thermodynamics Examples and problems to assist in learning Includes a complete set of references to all literature sources


Elementary Chemical Thermodynamics

Elementary Chemical Thermodynamics
Author: Bruce H. Mahan
Publisher: Courier Corporation
Total Pages: 178
Release: 2013-02-13
Genre: Science
ISBN: 0486151239

Download Elementary Chemical Thermodynamics Book in PDF, ePub and Kindle

This straightforward presentation emphasizes chemical applications of thermodynamics as well as physical interpretations, offering students an introduction that's both interesting and coherent. It considers chemical behavior in terms of energy and entropy, and it explains the ways in which the magnitude of energy and entropy changes are dictated by atomic properties. All concepts are presented in a simplified mathematical context, making this an ideal text for a beginning course in thermodynamics. The author considers the first and second laws of thermodynamics in turn, after which he proceeds to applications of thermodynamic principles. He devotes considerable attention to the concept of entropy, emphasizing the interpretation of entropy changes and chemical behavior in terms of qualitative molecular properties. Students gain a familiarity with the entropy concept that will form a solid foundation for later courses and more formal thermodynamic treatments.


Physical Chemistry for the Biosciences

Physical Chemistry for the Biosciences
Author: Raymond Chang
Publisher: University Science Books
Total Pages: 706
Release: 2005-02-11
Genre: Science
ISBN: 9781891389337

Download Physical Chemistry for the Biosciences Book in PDF, ePub and Kindle

This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications.