Thermal Transport In Novel Three Dimensional Carbon Nanostructures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Thermal Transport In Novel Three Dimensional Carbon Nanostructures PDF full book. Access full book title Thermal Transport In Novel Three Dimensional Carbon Nanostructures.

Thermal Transport in Novel Three Dimensional Carbon Nanostructures

Thermal Transport in Novel Three Dimensional Carbon Nanostructures
Author: Jungkyu Park
Publisher:
Total Pages: 0
Release: 2016
Genre: Graphene
ISBN:

Download Thermal Transport in Novel Three Dimensional Carbon Nanostructures Book in PDF, ePub and Kindle

Three-dimensional (3D) nanostructures comprised of one-dimensional (1D) and/or two-dimensional (2D) nanomaterials have several advantages over their base nanomaterials. Due to their dimensionally confined structures, for example, 1D carbon nanotubes (CNTs) and 2D graphene exhibit strong direction-dependent thermal transport properties with extremely inefficient cross-plane properties. However, 3D carbon nanostructures such as pillared graphene structures (PGS) are expected to be efficient in both in-plane and cross-plane thermal transport. The aim of this thesis is providing the detailed understanding of thermal transport in 3D carbon nanostructures comprised of CNTs and graphene. Reverse non-equilibrium molecular dynamics simulations were used to show that PGS and CNT networks can have both high in-plane and high cross-plane thermal conductivities comparable to their base nanomaterials, i.e. CNTs and graphene, and also to show that their thermal properties are tunable through altering their architectures. The results indicate that thermal resistances at CNT-graphene junctions result from the combined effect of phonon scattering at the junctions with distorted carbon-carbon bonds and the change in dimensionality of the phonon transport medium as phonons propagate from CNTs (1D) to graphene (2D) and then again to CNT. Moreover, wave packet analysis on SWCNT networks revealed that SWCNT-SWCNT junctions with lager diameter transmit thermal energy more efficiently than the junctions with smaller diameter, and also revealed that SWCNT-SWCNT T-junctions are more efficient in thermal energy transmission than X-junctions. A new experimental method for thermal conductivity measurements in 2D nanosheets was developed. The new method ensures a 1D heat conduction in a 2D sample by creating a spatially uniform temperature profile on the heated side of the sample, and thus improves the accuracy of the measurement in a 2D structure. A MEMS device that can measure the thermal conductivity of a graphene layer using this method is currently being fabricated for the validation of the method.


Thermal Transport in Carbon-Based Nanomaterials

Thermal Transport in Carbon-Based Nanomaterials
Author: Gang Zhang
Publisher: Elsevier
Total Pages: 386
Release: 2017-06-13
Genre: Technology & Engineering
ISBN: 0323473466

Download Thermal Transport in Carbon-Based Nanomaterials Book in PDF, ePub and Kindle

Thermal Transport in Carbon-Based Nanomaterials describes the thermal properties of various carbon nanomaterials and then examines their applications in thermal management and renewable energy. Carbon nanomaterials include: one-dimensional (1D) structures, like nanotubes; two-dimensional (2D) crystal lattice with only one-atom-thick planar sheets, like graphenes; composites based on carbon nanotube or graphene, and diamond nanowires and thin films. In the past two decades, rapid developments in the synthesis and processing of carbon-based nanomaterials have created a great desire among scientists to gain a greater understanding of thermal transport in these materials. Thermal properties in nanomaterials differ significantly from those in bulk materials because the characteristic length scales associated with the heat carriers, phonons, are comparable to the characteristic length. Carbon nanomaterials with high thermal conductivity can be applied in heat dissipation. This looks set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic over the coming years. This authoritative and comprehensive book will be of great use to both the existing scientific community in this field, as well as for those who wish to enter it. Includes coverage of the most important and commonly adopted computational and experimental methods to analyze thermal properties in carbon nanomaterials Contains information about the growth of carbon nanomaterials, their thermal properties, and strategies to control thermal properties and applications, allowing readers to assess how to use each material most efficiently Offers a comprehensive overview of the theoretical background behind thermal transport in carbon nanomaterials


Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts

Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts
Author: Michael Thompson Pettes
Publisher:
Total Pages: 278
Release: 2011
Genre:
ISBN:

Download Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts Book in PDF, ePub and Kindle

As silicon-based transistor technology continues to scale ever downward, anticipation of the fundamental limitations of ultimately-scaled devices has driven research into alternative device technologies as well as new materials for interconnects and packaging. Additionally, as power dissipation becomes an increasingly important challenge in highly miniaturized devices, both the implementation and verification of high mobility, high thermal conductivity materials, such as low dimensional carbon nanomaterials, and the experimental investigation of heat transfer in the nanoscale regime are requisite to continued progress. This work furthers the current understanding of structure-property relationships in low dimensional carbon nanomaterials, specifically carbon nanotubes (CNTs) and graphene, through use of combined thermal conductance and transmission electron microscopy (TEM) measurements on the same individual nanomaterials suspended between two micro-resistance thermometers. Through the development of a method to measure thermal contact resistance, the intrinsic thermal conductivity, [kappa], of multi-walled (MW) CNTs is found to correlate with TEM observed defect density, linking phonon-defect scattering to the low [kappa] in these chemical vapor deposition (CVD) synthesized nanomaterials. For single- (S) and double- (D) walled (W) CNTs, the [kappa] is found to be limited by thermal contact resistance for the as-grown samples but still four times higher than that for bulk Si. Additionally, through the use of a combined thermal transport-TEM study, the [kappa] of bi-layer graphene is correlated with both crystal structure and surface conditions. Theoretical modeling of the [kappa] temperature dependence allows for the determination that phonon scattering mechanisms in suspended bi-layer graphene with a thin polymeric coating are similar to those for the case of graphene supported on SiO2. Furthermore, a method is developed to investigate heat transfer through a nanoscale point contact formed between a sharp silicon tip and a silicon substrate in an ultra high vacuum (UHV) atomic force microscope (AFM). A contact mechanics model of the interface, combined with a heat transport model considering solid-solid conduction and near-field thermal radiation leads to the conclusion that the thermal resistance of the nanoscale point contact is dominated by solid-solid conduction.


Quantum Transport in One-dimensional Nanostructures

Quantum Transport in One-dimensional Nanostructures
Author: Joseph Albert Sulpizio
Publisher: Stanford University
Total Pages: 171
Release: 2011
Genre:
ISBN:

Download Quantum Transport in One-dimensional Nanostructures Book in PDF, ePub and Kindle

One-dimensional (1D) electronic nanostructures comprise a class of systems that boast tremendous promise for both technological innovation as well as fundamental scientific discovery. To fully harness their potential, it is crucial to understand transport through 1D systems at the most fundamental, quantum level. In this thesis, we describe our investigations down three avenues of quantum transport in 1D: (1) ballistic transport in quantum wires, (2) quantum capacitance measurements of nanostructures, and (3) tunneling measurements in carbon nanotubes. First, we discuss measurements and modeling of hole transport in ballistic quantum wires fabricated by GaAs/AlGaAs cleaved-edge overgrowth, where we find strong g-factor anisotropy, which we associate with spin-orbit coupling, and evidence for the importance of charge interactions, indicated by the observation of "0.7" structure. Additionally, we present the first experimental observation of a predicted spin-orbit gap in the 1D density of states, where counter-propagating spins constituting a spin current are accompanied by a clear signal in the conductance. Next, we present the development of a highly sensitive integrated capacitance bridge for quantum capacitance measurements to be used as a novel probe of 1D systems. We demonstrate the utility of our bridge by measuring the capacitance of top-gated graphene devices, where we cleanly resolve the density of states, and also present preliminary measurements of carbon nanotube devices, where we ultimately aim to extract their mobility. Finally, we discuss a set of transport measurements in carbon nanotubes designed to probe interactions between fermions in 1D in which top gates are used to introduce tunable tunnel barriers.


Thermal Transport in Isolated Carbon Nanostructures and Associated Nanocomposites

Thermal Transport in Isolated Carbon Nanostructures and Associated Nanocomposites
Author: Nayandeep Kumar Mahanta
Publisher:
Total Pages: 0
Release: 2012
Genre: Carbon nanotubes
ISBN:

Download Thermal Transport in Isolated Carbon Nanostructures and Associated Nanocomposites Book in PDF, ePub and Kindle

Carbon nanostructures, namely carbon nanotubes, nanofibers and graphene, owing to their extremely high thermal conductivities, hold promise for use as fillers in materials required for thermal management of electronics. Efficient thermal characterization holds the key to understanding the heat conduction mechanisms in the particular nanostructures and continued development of materials for novel applications. The present work involves development of dedicated techniques for characterization of the thermal conduction in individual carbon nanostructures and nanocomposites. The thermal flash technique developed for characterizing individual nanostructures provides a simple, accurate and reliable means for measuring thermal conductivity while managing to avoid the issues associated with conventional techniques. The thermal conductivities measured for vapor-grown carbon nanofibers and various graphene nanoplatelets were consistent with theoretical estimates based on the fundamentals of heat conduction in solids. Moreover, the results provide valuable evidence to support existing theories for explaining the differences between the various nanoscale manifestations of graphite. The investigation on isolated nanostructures was followed with the development and characterization of epoxy nanocomposites comprising graphite and graphene as fillers with the overarching goal of preparing composites with a thermal conductivity higher than 40 W/m-K. The thermal conductivities measured for some of the nanocomposites using the dual-mode heat flow meter, a steady-state heat technique developed in this work, were higher than the highest reported value in literature. The presence of large graphite flakes in conjunction with small amounts of graphene to reduce the overall thermal interface resistance were the principal reasons behind the extremely high thermal conductivity of 42.4 ± 4.8 W/m-K (nearly 250 times enhancement) for an epoxy composite with 30 wt% of graphite and 5 wt% of graphene.


A First-principles Investigation of the Transition Between Two- and Three-dimensional Thermal Transport in Graphene and Graphite

A First-principles Investigation of the Transition Between Two- and Three-dimensional Thermal Transport in Graphene and Graphite
Author: Patrick Strongman
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download A First-principles Investigation of the Transition Between Two- and Three-dimensional Thermal Transport in Graphene and Graphite Book in PDF, ePub and Kindle

Two-dimensional materials have become a popular research area over the past two decades because of their unique physical properties. The low dimensionality of these materials leads to interesting, and useful, transport properties such as thickness-dependent band gaps and high electrical and thermal conductivity. These materials have applications in nanoelectronics, optoelectronics, and thermoelectric energy generation, the performance of which depends sensitively on understanding and controlling how heat transport occurs. Most low dimensional materials can be derived by isolating them from their bulk counterparts, which are often comprised of stacks of the two-dimensional layers that are weakly bound together. These layered bulk materials often maintain some of the two-dimensional characteristics of their monolayer form because of the weak interlayer bonds. One common example of such a "quasi-2D" material is graphite, which is made of layered carbon sheets, i.e. graphene. When going from graphite to graphene the room-temperature in-plane thermal conductivity varies from approx. 2000 W/m K to 5800 W/m K, respectively. Both values are exceptionally high, but there is still a large difference between the two. Nevertheless, the majority of studies focus either on the bulk or low-dimensional versions of materials, with little focus on how the transition from 3D to 2D influences the microscopic properties and transport characteristics. The purpose of this study was to explain how the thermal transport properties of layered materials transition between two and three dimensions. Graphene and graphite were used as simple materials to model this transition. The thermal transport properties were calculated from first-principles using density functional theory (DFT) and iterative solutions to the Boltzmann transport equation (BTE). The transition between two and three dimensions was modelled by systematically moving the layers of graphite apart from each other until they were essentially isolated graphene sheets. The converged $\kappa$ values of the limiting cases of graphite and graphene agree with experimental measurements and previous calculations, with the stretched cases showing a monotonically increasing thermal conductivity from $\kappa_{\text{graphite}}$ to $\kappa_{\text{graphene}}$. Surprisingly, the largest variation in the thermal transport properties resulted from changes in the phonon dispersion. This is contrary to the previous belief that the difference in $\kappa$ resulted from certain three-phonon selection rules in graphene, which reduce the scattering probability, and do not apply to graphite. The selection rules appear to mostly still apply to graphite and the stretched graphite cases, indicating that the primary mechanism resulting in the differences between $\kappa_{\text{graphene}}$ and $\kappa_{\text{graphite}}$ was the shape of the phonon dispersion, and a corresponding shift in the phonon DOS. This type of analysis could be applied to other layered materials in the future to identify materials with the potential to be exceptional thermal conductors.


Thermal Behaviour and Applications of Carbon-Based Nanomaterials

Thermal Behaviour and Applications of Carbon-Based Nanomaterials
Author: Dimitrios V. Papavassiliou
Publisher: Elsevier
Total Pages: 368
Release: 2020-04-15
Genre: Technology & Engineering
ISBN: 0128176822

Download Thermal Behaviour and Applications of Carbon-Based Nanomaterials Book in PDF, ePub and Kindle

Nanocomposites with Carbon-based nanofillers (e.g., carbon nanotubes, graphene sheets and nanoribbons etc.) form a class of extremely promising materials for thermal applications. In addition to exceptional material properties, the thermal conductivity of the carbon-based nanofillers can be higher than any other known material, suggesting the possibility to engineer nanocomposites that are both lightweight and durable, and have unique thermal properties. This potential is hindered by thermal boundary resistance (TBR) to heat transfer at the interface between nanoinclusions and the matrix, and by the difficulty to control the dispersion pattern and the orientation of the nanoinclusions. Thermal Behaviour and Applications of Carbon-Based Nanomaterials: Theory, Methods and Applications explores heat transfer in nanocomposites, discusses techniques predicting and modeling the thermal behavior of carbon nanocomposites at different scales, and methods for engineering applications of nanofluidics and heat transfer. The chapters combine theoretical explanation, experimental methods and computational analysis to show how carbon-based nanomaterials are being used to optimise heat transfer. The applications-focused emphasis of this book makes it a valuable resource for materials scientists and engineers who want to learn more about nanoscale heat transfer. Offers an informed overview of how carbon nanomaterials are currently used for nanoscale heat transfer Discusses the major applications of carbon nanomaterials for heat transfer in a variety of industry sectors Details the major computational methods for the analysis of the thermal properties of carbon nanomaterials