Theory Of Quantum Transport At Nanoscale PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory Of Quantum Transport At Nanoscale PDF full book. Access full book title Theory Of Quantum Transport At Nanoscale.

Theory of Quantum Transport at Nanoscale

Theory of Quantum Transport at Nanoscale
Author: Dmitry Ryndyk
Publisher: Springer
Total Pages: 246
Release: 2015-12-08
Genre: Science
ISBN: 3319240889

Download Theory of Quantum Transport at Nanoscale Book in PDF, ePub and Kindle

This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.


Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems
Author: Massimiliano Di Ventra
Publisher: Cambridge University Press
Total Pages: 477
Release: 2008-08-07
Genre: Science
ISBN: 1139475029

Download Electrical Transport in Nanoscale Systems Book in PDF, ePub and Kindle

In recent years there has been a huge increase in the research and development of nanoscale science and technology. Central to the understanding of the properties of nanoscale structures is the modeling of electronic conduction through these systems. This graduate textbook provides an in-depth description of the transport phenomena relevant to systems of nanoscale dimensions. In this textbook the different theoretical approaches are critically discussed, with emphasis on their basic assumptions and approximations. The book also covers information content in the measurement of currents, the role of initial conditions in establishing a steady state, and the modern use of density-functional theory. Topics are introduced by simple physical arguments, with particular attention to the non-equilibrium statistical nature of electrical conduction, and followed by a detailed formal derivation. This textbook is ideal for graduate students in physics, chemistry, and electrical engineering.


Quantum Transport

Quantum Transport
Author: Yuli V. Nazarov
Publisher: Cambridge University Press
Total Pages: 1
Release: 2009-05-28
Genre: Science
ISBN: 1139478176

Download Quantum Transport Book in PDF, ePub and Kindle

Quantum transport is a diverse field, sometimes combining seemingly contradicting concepts - quantum and classical, conduction and insulating - within a single nanodevice. Quantum transport is an essential and challenging part of nanoscience, and understanding its concepts and methods is vital to the successful fabrication of devices at the nanoscale. This textbook is a comprehensive introduction to the rapidly developing field of quantum transport. The authors present the comprehensive theoretical background, and explore the groundbreaking experiments that laid the foundations of the field. Ideal for graduate students, each section contains control questions and exercises to check readers' understanding of the topics covered. Its broad scope and in-depth analysis of selected topics will appeal to researchers and professionals working in nanoscience.


Quantum Transport in Nanostructures and Molecules

Quantum Transport in Nanostructures and Molecules
Author: Colin John Lambert
Publisher:
Total Pages: 0
Release: 2021
Genre: Electron transport
ISBN: 9780750336390

Download Quantum Transport in Nanostructures and Molecules Book in PDF, ePub and Kindle

This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.


Quantum Transport

Quantum Transport
Author: Supriyo Datta
Publisher: Cambridge University Press
Total Pages: 434
Release: 2005-06-16
Genre: Technology & Engineering
ISBN: 1139443240

Download Quantum Transport Book in PDF, ePub and Kindle

This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.


Nano-Electronic Devices

Nano-Electronic Devices
Author: Dragica Vasileska
Publisher: Springer Science & Business Media
Total Pages: 450
Release: 2011-06-10
Genre: Technology & Engineering
ISBN: 1441988408

Download Nano-Electronic Devices Book in PDF, ePub and Kindle

This book surveys the advanced simulation methods needed for proper modeling of state-of-the-art nanoscale devices. It systematically describes theoretical approaches and the numerical solutions that are used in explaining the operation of both power devices as well as nano-scale devices. It clearly explains for what types of devices a particular method is suitable, which is the most critical point that a researcher faces and has to decide upon when modeling semiconductor devices.


Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology
Author: Felix A Buot
Publisher: World Scientific
Total Pages: 838
Release: 2009-08-05
Genre: Technology & Engineering
ISBN: 9814472972

Download Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology Book in PDF, ePub and Kindle

This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.


Dissipative Quantum Mechanics of Nanostructures

Dissipative Quantum Mechanics of Nanostructures
Author: Andrei D. Zaikin
Publisher: CRC Press
Total Pages: 393
Release: 2019-05-24
Genre: Science
ISBN: 1000024202

Download Dissipative Quantum Mechanics of Nanostructures Book in PDF, ePub and Kindle

Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.


Quantum Kinetics in Transport and Optics of Semiconductors

Quantum Kinetics in Transport and Optics of Semiconductors
Author: Hartmut Haug
Publisher: Springer Science & Business Media
Total Pages: 365
Release: 2007-12-10
Genre: Science
ISBN: 354073564X

Download Quantum Kinetics in Transport and Optics of Semiconductors Book in PDF, ePub and Kindle

The state-of-the-art of quantum transport and quantum kinetics in semiconductors, plus the latest applications, are covered in this monograph. Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas. This book is both a reference work for researchers and a self-tutorial for graduate students.


Quantum Transport in Mesoscopic Systems

Quantum Transport in Mesoscopic Systems
Author: David Sánchez
Publisher: MDPI
Total Pages: 426
Release: 2021-01-06
Genre: Mathematics
ISBN: 3039433660

Download Quantum Transport in Mesoscopic Systems Book in PDF, ePub and Kindle

Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.