Theory Of Critical Phenomena In Finite Size Systems Scaling And Quantum Effects PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory Of Critical Phenomena In Finite Size Systems Scaling And Quantum Effects PDF full book. Access full book title Theory Of Critical Phenomena In Finite Size Systems Scaling And Quantum Effects.

Theory of Critical Phenomena in Finite-size Systems

Theory of Critical Phenomena in Finite-size Systems
Author: ?ordan Brankov
Publisher: World Scientific
Total Pages: 468
Release: 2000
Genre: Science
ISBN: 9789810239251

Download Theory of Critical Phenomena in Finite-size Systems Book in PDF, ePub and Kindle

The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems. The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.


Finite-Size Scaling

Finite-Size Scaling
Author: J. Cardy
Publisher: Elsevier
Total Pages: 385
Release: 2012-12-02
Genre: Computers
ISBN: 0444596062

Download Finite-Size Scaling Book in PDF, ePub and Kindle

Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.


Quantum Field Theory and Critical Phenomena

Quantum Field Theory and Critical Phenomena
Author: Jean Zinn-Justin
Publisher: Oxford University Press
Total Pages: 1074
Release: 2021
Genre: Science
ISBN: 0198834624

Download Quantum Field Theory and Critical Phenomena Book in PDF, ePub and Kindle

Introduced as a quantum extension of Maxwell's classical theory, quantum electrodynamics has been the first example of a Quantum Field Theory (QFT). Eventually, QFT has become the framework for the discussion of all fundamental interactions at the microscopic scale except, possibly, gravity. More surprisingly, it has also provided a framework for the understanding of second order phase transitions in statistical mechanics. As this work illustrates, QFT is the natural framework for the discussion of most systems involving an infinite number of degrees of freedom with local couplings. These systems range from cold Bose gases at the condensation temperature (about ten nanokelvin) to conventional phase transitions (from a few degrees to several hundred) and high energy particle physics up to a TeV, altogether more than twenty orders of magnitude in the energy scale. Therefore, this text sets out to present a work in which the strong formal relations between particle physics and the theory of critical phenomena are systematically emphasized. This option explains some of the choices made in the presentation. A formulation in terms of field integrals has been adopted to study the properties of QFT. The language of partition and correlation functions has been used throughout, even in applications of QFT to particle physics. Renormalization and renormalization group properties are systematically discussed. The notion of effective field theory and the emergence of renormalisable theories are described. The consequences for fine tuning and triviality issue are emphasized. This fifth edition has been updated and fully revised, e.g. in particle physics with progress in neutrino physics and the discovery of the Higgs boson. The presentation has been made more homogeneous througout the volume, and emphasis has been put on the notion of effective field theory and discussion of the emergence of renormalisable theories.


Quantum Scaling in Many-Body Systems

Quantum Scaling in Many-Body Systems
Author: Mucio Continentino
Publisher: Cambridge University Press
Total Pages: 249
Release: 2017-04-17
Genre: Science
ISBN: 1107150256

Download Quantum Scaling in Many-Body Systems Book in PDF, ePub and Kindle

Focusing on experimental results, this updated edition approaches the problem of quantum phase transitions from a new and unifying perspective.


Quantum Scaling in Many-Body Systems

Quantum Scaling in Many-Body Systems
Author: Mucio Continentino
Publisher: Cambridge University Press
Total Pages: 249
Release: 2017-04-17
Genre: Science
ISBN: 110818412X

Download Quantum Scaling in Many-Body Systems Book in PDF, ePub and Kindle

Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.


Advances in Planar Lipid Bilayers and Liposomes

Advances in Planar Lipid Bilayers and Liposomes
Author:
Publisher: Academic Press
Total Pages: 383
Release: 2013-05-11
Genre: Science
ISBN: 0124115411

Download Advances in Planar Lipid Bilayers and Liposomes Book in PDF, ePub and Kindle

Advances in Planar Lipid Bilayers and Liposomes volumes cover a broad range of topics, including main arrangements of the reconstituted system, namely planar lipid bilayers as well as spherical liposomes. The invited authors present the latest results of their own research groups in this exciting multidisciplinary field. Incorporates contributions from newcomers and established and experienced researchers Explores the planar lipid bilayer systems and spherical liposomes from both theoretical and experimental perspectives Serves as an indispensable source of information for new scientists


Quantum Mathematics II

Quantum Mathematics II
Author: Michele Correggi
Publisher: Springer Nature
Total Pages: 371
Release: 2024-01-09
Genre: Science
ISBN: 9819958849

Download Quantum Mathematics II Book in PDF, ePub and Kindle

This book is the second volume that provides an unique overview of the most recent and relevant contributions in the field of mathematical physics with a focus on the mathematical features of quantum mechanics. It is a collection of review papers together with brand new works related to the activities of the INdAM Intensive Period "INdAM Quantum Meetings (IQM22)", which took place at the Politecnico di Milano in Spring 2022 at Politecnico di Milano. The range of topics covered by the book is wide, going ranging from many-body quantum mechanics to quantum field theory and open quantum systems.


C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics

C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics
Author: Jean-Bernard Bru
Publisher: Springer Nature
Total Pages: 497
Release: 2023-06-16
Genre: Science
ISBN: 3031289498

Download C*-Algebras and Mathematical Foundations of Quantum Statistical Mechanics Book in PDF, ePub and Kindle

This textbook provides a comprehensive introduction to the mathematical foundations of quantum statistical physics. It presents a conceptually profound yet technically accessible path to the C*-algebraic approach to quantum statistical mechanics, demonstrating how key aspects of thermodynamic equilibrium can be derived as simple corollaries of classical results in convex analysis. Using C*-algebras as examples of ordered vector spaces, this book makes various aspects of C*-algebras and their applications to the mathematical foundations of quantum theory much clearer from both mathematical and physical perspectives. It begins with the simple case of Gibbs states on matrix algebras and gradually progresses to a more general setting that considers the thermodynamic equilibrium of infinitely extended quantum systems. The book also illustrates how first-order phase transitions and spontaneous symmetry breaking can occur, in contrast to the finite-dimensional situation. One of the unique features of this book is its thorough and clear treatment of the theory of equilibrium states of quantum mean-field models. This work is self-contained and requires only a modest background in analysis, topology, and functional analysis from the reader. It is suitable for both mathematicians and physicists with a specific interest in quantum statistical physics.


Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory

Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory
Author: Alvaro Ferraz
Publisher: Springer Nature
Total Pages: 408
Release: 2020-02-29
Genre: Science
ISBN: 3030354733

Download Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory Book in PDF, ePub and Kindle

This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the engineering of these states in quantum devices and novel materials useful for quantum information processing. The book offers graduate students and young researchers in the field of modern condensed matter theory an updated review of the most relevant theoretical methods used in strongly coupled field theory and string theory. It also provides the tools for understanding their relevance in describing the emergence of new quantum states in a variety of physical settings. Specifically, this proceedings book summarizes new and previously unrelated developments in modern condensed matter physics, in particular: the interface of condensed matter theory and quantum information theory; the interface of condensed matter physics and the mathematics emerging from the classification of the topological phases of matter, such as topological insulators and topological superconductors; and the simulation of condensed matter systems with cold atoms in optical lattices.


Conformal Invariance and Critical Phenomena

Conformal Invariance and Critical Phenomena
Author: Malte Henkel
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2013-03-14
Genre: Science
ISBN: 3662039370

Download Conformal Invariance and Critical Phenomena Book in PDF, ePub and Kindle

Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.