Theoretical And Experimental Development Of A Zno Based Laterally Excited Thickness Shear Mode Acoustic Wave Immunosensor For Cancer Biomarker Detection PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theoretical And Experimental Development Of A Zno Based Laterally Excited Thickness Shear Mode Acoustic Wave Immunosensor For Cancer Biomarker Detection PDF full book. Access full book title Theoretical And Experimental Development Of A Zno Based Laterally Excited Thickness Shear Mode Acoustic Wave Immunosensor For Cancer Biomarker Detection.

Theoretical and Experimental Development of a ZnO-based Laterally Excited Thickness Shear Mode Acoustic Wave Immunosensor for Cancer Biomarker Detection

Theoretical and Experimental Development of a ZnO-based Laterally Excited Thickness Shear Mode Acoustic Wave Immunosensor for Cancer Biomarker Detection
Author: Christopher David Corso
Publisher:
Total Pages:
Release: 2008
Genre: Acoustic surface wave devices
ISBN:

Download Theoretical and Experimental Development of a ZnO-based Laterally Excited Thickness Shear Mode Acoustic Wave Immunosensor for Cancer Biomarker Detection Book in PDF, ePub and Kindle

The object of this thesis research was to develop and characterize a new type of acoustic biosensor - a ZnO-based laterally excited thickness shear mode (TSM) resonator in a solidly mounted configuration. The first specific aim of the research was to develop the theoretical underpinnings of the acoustic wave propagation in ZnO. Theoretical calculations were carried out by solving the piezoelectrically stiffened Christoffel equation to elucidate the acoustic modes that are excited through lateral excitation of a ZnO stack. A finite element model was developed to confirm the calculations and investigate the electric field orientation and density for various electrode configurations. A proof of concept study was also carried out using a Quartz Crystal Microbalance device to investigate the application of thickness shear mode resonators to cancer biomarker detection in complex media. The results helped to provide a firm foundation for the design of new gravimetric sensors with enhanced capabilities. The second specific aim was to design and fabricate arrays of multiple laterally excited TSM devices and fully characterize their electrical properties. The solidly mounted resonator configuration was developed for the ZnO-based devices through theoretical calculations and experimentation. A functional mirror comprised of W and SiO2 was implemented in development of the TSM resonators. The devices were fabricated and tested for values of interest such as Q, and electromechanical coupling (K2) as well as their ability to operate in liquids.


Acoustic Sensors for Biomedical Applications

Acoustic Sensors for Biomedical Applications
Author: Nilanjan Dey
Publisher: Springer
Total Pages: 64
Release: 2018-07-20
Genre: Technology & Engineering
ISBN: 3319922254

Download Acoustic Sensors for Biomedical Applications Book in PDF, ePub and Kindle

In this book, application-related studies for acoustic biomedical sensors are covered in depth. The book features an array of different biomedical signals, including acoustic biomedical signals as well as the thermal biomedical signals, magnetic biomedical signals, and optical biomedical signals to support healthcare. It employs signal processing approaches, such as filtering, Fourier transform, spectral estimation, and wavelet transform. The book presents applications of acoustic biomedical sensors and bio-signal processing for prediction, detection, and monitoring of some diseases from the phonocardiogram (PCG) signal analysis. Several challenges and future perspectives related to the acoustic sensors applications are highlighted. This book supports the engineers, researchers, designers, and physicians in several interdisciplinary domains that support healthcare.


Development and Utilization of Shear Mode Acoustic Wave Biosensors for the Detection of Ovarian Cancer

Development and Utilization of Shear Mode Acoustic Wave Biosensors for the Detection of Ovarian Cancer
Author: Marwan Saoud
Publisher:
Total Pages: 198
Release: 2010
Genre:
ISBN:

Download Development and Utilization of Shear Mode Acoustic Wave Biosensors for the Detection of Ovarian Cancer Book in PDF, ePub and Kindle

Recent proteome studies have discovered the presence of heat shock protein 10 (HSP- 10) as an immunosuppressant in ovarian cancer patients. Due to the severity of ovarian cancer, the development of highly sensitive techniques for the early detection of this cancer is well in demand. In this manuscript, the thickness shear mode (TSM) acoustic wave biosensor will be used for the real-time and label-free detection of HSP-10 in buffer. The TSM sensitivity for HSP-10 is evaluated based on resonance frequency shifts generated by the biosensor. A nucleic acid aptamer, which is specifically engineered by in vitro selection to target HSP-10, is employed as the biosensing element of the biosensor. Alkylthiol-based self-assembling monolayers (SAMs), composed of various linker/diluent molar ratios, are used to immobilize the aptamer onto gold-coated piezoelectric quartz substrates. The TSM biosensing properties for avidin-biotin interactions are also evaluated in order to assess the biosensor response to HSP-10 protein-aptamer interaction.


ZnO/GaAs-based Acoustic Waves Microsensor for the Detection of Bacteria in Complex Liquid Media

ZnO/GaAs-based Acoustic Waves Microsensor for the Detection of Bacteria in Complex Liquid Media
Author: Juliana Chawich
Publisher:
Total Pages: 179
Release: 2019
Genre:
ISBN:

Download ZnO/GaAs-based Acoustic Waves Microsensor for the Detection of Bacteria in Complex Liquid Media Book in PDF, ePub and Kindle

This thesis was conducted in the frame of an international collaboration between Université de Bourgogne Franche-Comté in France and Université de Sherbrooke in Canada. It addresses the development of a miniaturized biosensor for the detection and quantification of bacteria in complex liquid media. The targeted bacteria is Escherichia coli (E. coli), regularly implicated in outbreaks of foodborne infections, and sometimes fatal.The adopted geometry of the biosensor consists of a gallium arsenide (GaAs) membrane with a thin layer of piezoelectric zinc oxide (ZnO) on its front side. The contribution of ZnO structured in a thin film is a real asset to achieve better performances of the piezoelectric transducer and consecutively a better sensitivity of detection. A pair of electrodes deposited on the ZnO film allows the generation of an acoustic wave propagating in GaAs under a sinusoidal voltage, at a given frequency. The backside of the membrane is functionalized with a self-assembled monolayer (SAM) of alkanethiols and antibodies anti-E. coli, providing the specificity of detection. Thus, the biosensor benefits from the microfabrication and bio-functionalization technologies of GaAs, validated within the research team, and the promising piezoelectric properties of ZnO, to potentially achieve a highly sensitive and specific detection of the bacteria of interest. The challenge is to be able to detect and quantify these bacteria at very low concentrations in a complex liquid and/or biological sample.The research work partly focused on the deposition and characterization of piezoelectric ZnO thin films on GaAs substrates. The effect of the crystalline orientation of GaAs and the use of a titanium / platinum buffer layer between ZnO and GaAs were studied using different structural (X-ray diffraction, Raman spectroscopy, secondary ionization mass spectrometry), topographic (atomic force microscopy), optical (ellipsometry) and electrical characterizations. After the realization of the electrical contacts on top of the ZnO film, the GaAs membrane was micromachined using chemical wet etching. Once fabricated, the transducer was tested in air and liquid medium by electrical measurements, in order to determine the resonance frequencies for thickness shear mode. A protocol for surface bio-functionalization, validated in the laboratory, was applied to the back of the biosensor for anchoring SAMs and antibodies, while protecting the top side. Furthermore, different conditions of antibody grafting such as the concentration, pH and incubation time, were tested to optimize the immunocapture of bacteria. In addition, the impact of the pH and the conductivity of the solution to be tested on the response of the biosensor has been determined. The performances of the biosensor were evaluated by detection tests of the targeted bacteria, E. coli, while correlating electrical measurements with fluorescence microscopy. Detection tests were completed by varying the concentration of E. coli in environments of increasing complexity. Various types of controls were performed to validate the specificity criteria. Thanks to its small size, low cost of fabrication and rapid response, the proposed biosensor has the potential of being applied in clinical diagnostic laboratories for the detection of E. coli.


Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer

Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer
Author:
Publisher:
Total Pages: 269
Release: 2009
Genre:
ISBN:

Download Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer Book in PDF, ePub and Kindle

In this research, I present several novel contributions to the field of microelectronic acoustic biosensors that approach the goal of developing a cost-effective, highly sensitive and highly selective sensor array for the detection of early cancer proliferation. First I report on the development of a novel solidly mounted shear-mode resonator employing piezoelectric ZnO as an appropriate base device for liquid-phase sensing applications. Second I report on the development of a novel and appropriate chemical surface preparation protocol for the covalent immobilization of monoclonal IgG antibodies to the surface of this device, thereby functionalizing it as a biosensor. Proof of functionality is demonstrated employing these sensors for the detection of various known cancer biomarkers in complex media as well as progress towards developing a packaged disposable sensor array system is also reported.


ZnO Nanotip-based Acoustic Wave Sensors

ZnO Nanotip-based Acoustic Wave Sensors
Author:
Publisher:
Total Pages: 158
Release: 2008
Genre: Acoustic surface wave devices
ISBN:

Download ZnO Nanotip-based Acoustic Wave Sensors Book in PDF, ePub and Kindle

ZnO nanostructures possess unique advantages for the biosensor applications, such as giant surface areas, high sensitivity, biological compatibility, and integratability with Si-based electronics. This dissertation addresses the development of ZnO nanotip-based acoustic wave sensors, and their biological applications. ZnO nanostructures are grown on the surfaces of various sensors, including surface acoustic wave (SAW) sensors and quartz crystal microbalance (QCM) sensors, by metalorganic chemical vapor deposition (MOCVD). The single crystalline ZnO nanotips are well aligned along the substrate normal direction, confirmed by scanning electron microscope (SEM) and X-ray diffraction (XRD) measurements, respectively. The photoluminescence (PL) measurements show the free exciton emission at room temperature, indicating superior optical property of the ZnO nanotips. The surface wetting properties of the ZnO nanostructured sensing surfaces are studied. It is demonstrated that the contact angles on ZnO nanotips can be changed between 0 and 130 degrees. The repeatable and reversible transitions between hydrophobic and superhydrophilic status of ZnO nanostructured surfaces have been achieved by UV illumination and low temperature oxygen annealing. The transition rate has been increased by 10-times in comparison with the published results. The immobilizations of DNA oligonucleotides to ZnO nanostructures have been conducted. DNA hybridization with complementary and non-complementary second strand DNA oligonucleotide is used to study the selectivity of the SAW sensor. The radioactive labeling tests and SAW sensor responses demonstrate that by using ZnO nanotips the DNA immobilization is enhanced by a factor of 200 in comparison with using the ZnO films. A ZnO nanotip-based QCM sensor is developed. The ZnO nanotip coated QCM sensor shows a 10-times larger frequency shift than that of regular QCM sensors, when measuring the same DNA oligonucleotide solution. In addition, the superhydrophilic behaviors of the nanotip array significantly reduce the required liquid volume for effective detection and only 3% solution is required to cover the same sensing surface compared to the traditional QCM sensor. The superhydrophilic sensing surface boosts the solution taking ability; therefore, enhances the sensitivity of the QCM sensor. The functionalization of ZnO nanotips with a series of mono- or bi-functional linkers have been achieved, which makes the selective biological sensing possible on the ZnO nanotip based QCM. ZnO nanotip-based SAW and QCM sensors possess the advantages of both traditional acoustic wave sensors and ZnO nanostructures, including high efficiency, good selectivity, low cost and broad biological applications.


Electrical Characterization of ZnO thin films grown by molecular beam epitaxy

Electrical Characterization of ZnO thin films grown by molecular beam epitaxy
Author: Vladimir Petukhov
Publisher: Cuvillier Verlag
Total Pages: 112
Release: 2012-04-25
Genre: Science
ISBN: 373694084X

Download Electrical Characterization of ZnO thin films grown by molecular beam epitaxy Book in PDF, ePub and Kindle

For the electronic and optoelectronic device realization a precise control of the electrical properties in the utilized material is a very important issue. Doping profiles in realized p-njunctions influence the functionality of the devices. The morphological and crystal properties of a device material directly influence the electrical ones. Dislocations present in a region of p-n-junctions can short circuit them leading to malfunctions. Too rough surfaces during epitaxial growth could lead to inhomogeneities in a single or multiple quantum wells and superlattices. The main goal of the present work was to provide the basis for a reliable p-type doping of ZnO grown by molecular beam epitaxy. Firstly, the well established heteroepitaxial growth on c-sapphire substrates has been employed. Based on the theoretical and experimental works, suggesting nitrogen to be the impurity that builds the most shallow acceptor level in ZnO comparing to other group-V elements, it has been implied as a dopant. To generate reactive nitrogen atoms an rf-plasma source has been utilized in the MBE process. The resulting samples have been characterized by such methods as AFM, XRD, TEM, PL spectroscopy, temperature domain Hall measurements (TDHM) and ECV-profiling. First results of TDHM have shown that even in undoped samples the temperature dependencies of the electron mobility and carrier concentration have regions which are difficult to interpret. It is necessary to fit them with theoretical curves in order to extract the correct values. This task has proven to be very difficult. The complicated character of the dependencies has been explained in terms of the multilayer conduction model dividing a layer in thin interfacial region with mobility and carrier concentration μ1 and n1 respectivly and bulk region with a higher mobility μ2 and lower carrier concentration n2. The electrical transport in the bulk region has been modeled in terms of the general scattering theory in polar semiconductors. Such scattering mechanisms as scattering on polar-optical phonons, piezoelectric phonons, acoustic deformation potential, strain induced fields, dislocations, ionized and neutral impurities have been taken into account. Two cases have been considered to model transport in the interfacial region: 1) transport takes place in the conduction band of a highly doped degenerate semiconductor; 2) transport takes place in the impurity band formed by intermediate concentration of impurities and in conduction band in parallel. In the second case transport at the interface in conduction band has been neglected in the region of the low temperatures due to the impurities freeze-out and carrier concentration has been taken temperature independent like in the first case. To investigate experimentally the transport character in these two regions independently a mobility-spectrum analysis has been conducted. Theoretical results utilizing the two models have been compared with experimentally extracted mobility and carrier concentration in the interfacial region. It has been concluded that the concentration of donors in the layers is not high enough for the impurity band to merge with the conduction band and the second model is more consistent. The theoretically acquired donor concentration profiles have been compared with ECV-profiles. The agreement is very good. Simulations have revealed a shallow donor state with the ionization energy of approximately 45 meV . In the literature, this donor state in ZnO is attributed to hydrogen. However, due to the high diffusion mobility of hydrogen in ZnO, an annealing process would obviously decrease the carrier concentration in the samples which has not been the case. It has been suggested that the main donor centers are the electrically active crystal point defects generated by dislocations. Layers doped with nitrogen have been grown at very low temperatures (≈ 200°C) and at temperatures ranging from 400°C to 500°C, which are optimal for the epitaxial growth of ZnO. The samples grown at low temperatures are single crystalline with mosaic structure. In both cases, the introduction of the dopant increased the carrier concentration. This has been accounted for a bad crystal quality resulting in the inhomogeneous incorporation of nitrogen and for high background donor concentration due to the high dislocations densities. Additionally, the incorporation of acceptor centers shifts the Fermi-level increasing the formation probability of the compensating point defects. The analysis of TDHM showed an inconsistency of the one donor level model in the case of nitrogen doped samples. This fact and the decrease in the carrier concentration after annealing at 800°C for 30 minutes in ambient air can be explained by nitrogen forming donor-like defect complexes. In an attempt to improve the crystal quality of the heteroepitaxial layers, 15 periods of a ZnO/Zn0.6Mg0.4O superlattice structure have been inserted between the conventional double HT-MgO/LT-ZnO buffer and a main HT-ZnO layer. TDHM has revealed a very high mobility close to the values measured in a bulk ZnO for the temperature range of 20 - 300 K. However, TEM investigations of the samples have not indicated any decrease in the dislocation density comparing with the similar samples without a superlattice. Such a high mobility has been attributed to an electron transport in the superlattice structure. Heteroepitaxial growth of high quality ZnO-layers has proven to be challenging leaving the homoepitaxial growth as the only possibility to obtain the epitaxial layers with the best structural and electrical properties. The hydrothermally grown bulk ZnO substrates from two supplying companies, CrysTec and TokyoDenpa, have been employed for homoepitaxy. The substrates from CrysTec have not been epi-ready. Although AFM images reveal very flat surface, this has been damaged by the process of the chemomechanical polishing. This damaged layer must be removed. This has been achieved by the thermal annealing for 3 hours at 1050°C in ambient air. The thermally treated surfaces resulted in atomically flat terraces. XRD measurements have indicated an improvement of the crystal quality after annealing. The resistivity of the bulk substrates decreased after the thermal treatment due to out-diffusion of the compensating Li atoms letting Al, Ga and In atoms to contribute to conduction. After the longer annealing processes the etch-pits have been discovered on O-polar faces. The same features could be achieved by the chemical etching in a nitric acid on Zn-polar faces. The density of the threading dislocations on both polar faces for both types of substrates calculated by the etch-pit density investigation is about 105 1/cm2. Further the thermally treated substrates with atomically flat terraces have been utilized for homoepitaxy. The differences in growth kinetics during the molecular beam epitaxy on such substrates with the improved surface quality depending on their polarity have been investigated by RHEED measurements. The growth on a Zn-polar face has a 3D-character independently on a supplier. Morphologies of the resulting O- and Zn-polar layers have shown to be different. This has been explained by the presence of dangling bonds on Opolar face and thus, shorter diffusion time of the impinging Zn atoms on the surface. XRD and TEM measurements have shown a perfect crystal quality of the overgrown layers. The PL spectra of homoepitaxial layers are governed by the donor impurities diffused from the substrates. Considering the SIMS measurements of homoepitaxial layers found in the literature it has been concluded that the diffusion of donors in the layers grown on Zn-polar faces takes less effect then for the O-polar films. This conclusion has enforced the utilization of Zn-polar substrates supplied by CrysTec for the experiments with nitrogen doping of ZnO because of their affordable price. The electrical properties measured by ECV-profiling in series of homoepitaxial layers with varied growth parameters have shown an increase of the carrier concentration with the nitrogen incorporation. In addition, it has also been shown that the resulting electrical properties near the interface are governed mostly by the initial properties of the substrates. With increasing thickness of the layers carrier concentration saturated to the values of around 1016 1/cm3. The recent successful realization of the p-type MgZnO layers on TokyoDenpa substrates by researchers from Japan suggests switching to the p-type doped alloys because the above discussed results indicate that p-type doping with nitrogen of a pure ZnO is very difficult or even impossible. This is due to a rather fundamental reason: the formation of the compensating donor centers with the incorporation of acceptor atoms. As the first step in the future works, it is obvious to try to reproduce the results of the ZnMgO p-type doping with nitrogen employing growth on ZnO substrates.