The Role Of Synaptic Tagging And Capture For Memory Dynamics In Spiking Neural Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Role Of Synaptic Tagging And Capture For Memory Dynamics In Spiking Neural Networks PDF full book. Access full book title The Role Of Synaptic Tagging And Capture For Memory Dynamics In Spiking Neural Networks.

The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks

The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks
Author: Jannik Luboeinski
Publisher:
Total Pages: 201
Release: 2021-09-02
Genre: Science
ISBN:

Download The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks Book in PDF, ePub and Kindle

Memory serves to process and store information about experiences such that this information can be used in future situations. The transfer from transient storage into long-term memory, which retains information for hours, days, and even years, is called consolidation. In brains, information is primarily stored via alteration of synapses, so-called synaptic plasticity. While these changes are at first in a transient early phase, they can be transferred to a late phase, meaning that they become stabilized over the course of several hours. This stabilization has been explained by so-called synaptic tagging and capture (STC) mechanisms. To store and recall memory representations, emergent dynamics arise from the synaptic structure of recurrent networks of neurons. This happens through so-called cell assemblies, which feature particularly strong synapses. It has been proposed that the stabilization of such cell assemblies by STC corresponds to so-called synaptic consolidation, which is observed in humans and other animals in the first hours after acquiring a new memory. The exact connection between the physiological mechanisms of STC and memory consolidation remains, however, unclear. It is equally unknown which influence STC mechanisms exert on further cognitive functions that guide behavior. On timescales of minutes to hours (that means, the timescales of STC) such functions include memory improvement, modification of memories, interference and enhancement of similar memories, and transient priming of certain memories. Thus, diverse memory dynamics may be linked to STC, which can be investigated by employing theoretical methods based on experimental data from the neuronal and the behavioral level. In this thesis, we present a theoretical model of STC-based memory consolidation in recurrent networks of spiking neurons, which are particularly suited to reproduce biologically realistic dynamics. Furthermore, we combine the STC mechanisms with calcium dynamics, which have been found to guide the major processes of early-phase synaptic plasticity in vivo. In three included research articles as well as additional sections, we develop this model and investigate how it can account for a variety of behavioral effects. We find that the model enables the robust implementation of the cognitive memory functions mentioned above. The main steps to this are: 1. demonstrating the formation, consolidation, and improvement of memories represented by cell assemblies, 2. showing that neuromodulator-dependent STC can retroactively control whether information is stored in a temporal or rate-based neural code, and 3. examining interaction of multiple cell assemblies with transient and attractor dynamics in different organizational paradigms. In summary, we demonstrate several ways by which STC controls the late-phase synaptic structure of cell assemblies. Linking these structures to functional dynamics, we show that our STC-based model implements functionality that can be related to long-term memory. Thereby, we provide a basis for the mechanistic explanation of various neuropsychological effects. Keywords: synaptic plasticity; synaptic tagging and capture; spiking recurrent neural networks; memory consolidation; long-term memory


The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks

The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks
Author: Jannik Luboeinski
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

Download The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks Book in PDF, ePub and Kindle

Memory serves to process and store information about experiences such that this information can be used in future situations. The transfer from transient storage into long-term memory, which retains information for hours, days, and even years, is called consolidation. In brains, information is primarily stored via alteration of synapses, so-called synaptic plasticity. While these changes are at first in a transient early phase, they can be transferred to a late phase, meaning that they become stabilized over the course of several hours. This stabilization has been explained by so-called syn...


Synaptic Tagging and Capture

Synaptic Tagging and Capture
Author: Sreedharan Sajikumar
Publisher: Springer Nature
Total Pages: 507
Release:
Genre:
ISBN: 3031548647

Download Synaptic Tagging and Capture Book in PDF, ePub and Kindle


The Role of Short-term Synaptic Plasticity in Neural Network Spiking Dynamics and in the Learning of Multiple Distal Rewards

The Role of Short-term Synaptic Plasticity in Neural Network Spiking Dynamics and in the Learning of Multiple Distal Rewards
Author: Michael John O'Brien
Publisher:
Total Pages: 135
Release: 2013
Genre:
ISBN:

Download The Role of Short-term Synaptic Plasticity in Neural Network Spiking Dynamics and in the Learning of Multiple Distal Rewards Book in PDF, ePub and Kindle

In this thesis, we assess the role of short-term synaptic plasticity in an artificial neural network constructed to emulate two important brain functions: self-sustained activity and signal propagation. We employ a widely used short-term synaptic plasticity model (STP) in a symbiotic network, in which two subnetworks with differently tuned STP behaviors are weakly coupled. This enables both self-sustained global network activity, generated by one of the subnetworks, as well as faithful signal propagation within subcircuits of the other subnetwork. Finding the parameters for a properly tuned STP network is difficult. We provide a theoretical argument for a method which boosts the probability of finding the elusive STP parameters by two orders of magnitude, as demonstrated in tests. We then combine STP with a novel critic-like synaptic learning algorithm, which we call ARG-STDP for attenuated-reward-gating of STDP. STDP refers to a commonly used long term synaptic plasticity model called spike-timing dependent plasticity. With ARG-STDP, we are able to learn multiple distal rewards simultaneously, improving on the previous reward modulated STDP (R-STDP) that could learn only a single distal reward. However, we also provide a theoretical upperbound on the number of distal reward that can be learned using ARG-STDP. We also consider the problem of simulating large spiking neural networks. We describe an architecture for efficiently simulating such networks. The architecture is suitable for implementation on a cluster of General Purpose Graphical Processing Units (GPGPU). Novel aspects of the architecture are described and an analysis of its performance is benchmarked on a GPGPU cluster. With the advent of inexpensive GPGPU cards and compute power, the described architecture offers an affordable and scalable tool for the design, real-time simulation, and analysis of large scale spiking neural networks. DP.


Spike-timing dependent plasticity

Spike-timing dependent plasticity
Author: Henry Markram
Publisher: Frontiers E-books
Total Pages: 575
Release:
Genre:
ISBN: 2889190439

Download Spike-timing dependent plasticity Book in PDF, ePub and Kindle

Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when two neurons are active together. Neurons that fire together may therefore not necessarily wire together if the precise timing of the spikes involved are not tighly correlated. In the subsequent 15 years, Spike Timing Dependent Plasticity (STDP) has been found in multiple brain brain regions and in many different species. The size and shape of the time windows in which positive and negative changes can be made vary for different brain regions, but the core principle of spike timing dependent changes remain. A large number of theoretical studies have also been conducted during this period that explore the computational function of this driving principle and STDP algorithms have become the main learning algorithm when modeling neural networks. This Research Topic will bring together all the key experimental and theoretical research on STDP.


Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology
Author: Poramate Manoonpong
Publisher: Frontiers Media SA
Total Pages: 278
Release: 2018-10-11
Genre:
ISBN: 2889456056

Download Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex Behavior: From Biology to Technology Book in PDF, ePub and Kindle

How can neural and morphological computations be effectively combined and realized in embodied closed-loop systems (e.g., robots) such that they can become more like living creatures in their level of performance? Understanding this will lead to new technologies and a variety of applications. To tackle this research question, here, we bring together experts from different fields (including Biology, Computational Neuroscience, Robotics, and Artificial Intelligence) to share their recent findings and ideas and to update our research community. This eBook collects 17 cutting edge research articles, covering neural and morphological computations as well as the transfer of results to real world applications, like prosthesis and orthosis control and neuromorphic hardware implementation.


Value and Reward Based Learning in Neurobots

Value and Reward Based Learning in Neurobots
Author: Jeffrey L Krichmar
Publisher: Frontiers Media SA
Total Pages: 159
Release: 2015-03-05
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 2889194310

Download Value and Reward Based Learning in Neurobots Book in PDF, ePub and Kindle

Organisms are equipped with value systems that signal the salience of environmental cues to their nervous system, causing a change in the nervous system that results in modification of their behavior. These systems are necessary for an organism to adapt its behavior when an important environmental event occurs. A value system constitutes a basic assumption of what is good and bad for an agent. These value systems have been effectively used in robotic systems to shape behavior. For example, many robots have used models of the dopaminergic system to reinforce behavior that leads to rewards. Other modulatory systems that shape behavior are acetylcholine’s effect on attention, norepinephrine’s effect on vigilance, and serotonin’s effect on impulsiveness, mood, and risk. Moreover, hormonal systems such as oxytocin and its effect on trust constitute as a value system. This book presents current research involving neurobiologically inspired robots whose behavior is: 1) Shaped by value and reward learning, 2) adapted through interaction with the environment, and 3) shaped by extracting value from the environment.


Working Memory Capacity

Working Memory Capacity
Author: Nelson Cowan
Publisher: Psychology Press
Total Pages: 238
Release: 2016-04-14
Genre: Psychology
ISBN: 1317232380

Download Working Memory Capacity Book in PDF, ePub and Kindle

The idea of one's memory "filling up" is a humorous misconception of how memory in general is thought to work; it actually has no capacity limit. However, the idea of a "full brain" makes more sense with reference to working memory, which is the limited amount of information a person can hold temporarily in an especially accessible form for use in the completion of almost any challenging cognitive task. This groundbreaking book explains the evidence supporting Cowan's theoretical proposal about working memory capacity, and compares it to competing perspectives. Cognitive psychologists profoundly disagree on how working memory is limited: whether by the number of units that can be retained (and, if so, what kind of units and how many), the types of interfering material, the time that has elapsed, some combination of these mechanisms, or none of them. The book assesses these hypotheses and examines explanations of why capacity limits occur, including vivid biological, cognitive, and evolutionary accounts. The book concludes with a discussion of the practical importance of capacity limits in daily life. This 10th anniversary Classic Edition will continue to be accessible to a wide range of readers and serve as an invaluable reference for all memory researchers.


Inhibitory Synaptic Plasticity

Inhibitory Synaptic Plasticity
Author: Melanie A. Woodin
Publisher: Springer Science & Business Media
Total Pages: 191
Release: 2010-11-02
Genre: Medical
ISBN: 1441969780

Download Inhibitory Synaptic Plasticity Book in PDF, ePub and Kindle

This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.


Local Cortical Circuits

Local Cortical Circuits
Author: Moshe Abeles
Publisher: Springer Science & Business Media
Total Pages: 105
Release: 2012-12-06
Genre: Medical
ISBN: 3642817084

Download Local Cortical Circuits Book in PDF, ePub and Kindle

Neurophysiologists are often accused by colleagues in the physical sci ences of designing experiments without any underlying hypothesis. This impression is attributable to the ease of getting lost in the ever-increasing sea of professional publications which do not state explicitly the ultimate goal of the research. On the other hand, many of the explicit models for brain function in the past were so far removed from experimental reality that they had very little impact on further research. It seems that one needs much intimate experience with the real nerv-. ous system before a reasonable model can be suggested. It would have been impossible for Copernicus to suggest his model of the solar system without the detailed observations and tabulations of star and planet motion accu mulated by the preceeding generations. This need for intimate experience with the nervous system before daring to put forward some hypothesis about its mechanism of action is especially apparent when theorizing about cerebral cortex function. There is widespread agreement that processing of information in the cor tex is associated with complex spatio-temporal patterns of activity. Yet the vast majority of experimental work is based on single neuron recordings or on recordings made with gross electrodes to which tens of thousands of neurons contribute in an unknown fashion. Although these experiments have taught us a great deal about the organization and function of the cor tex, they have not enabled us to examine the spatio-temporal organization of neuronal activity in any detail.