The Reactivity Of Energetic Materials At Extreme Conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Reactivity Of Energetic Materials At Extreme Conditions PDF full book. Access full book title The Reactivity Of Energetic Materials At Extreme Conditions.

The Reactivity of Energetic Materials At Extreme Conditions

The Reactivity of Energetic Materials At Extreme Conditions
Author:
Publisher:
Total Pages: 46
Release: 2006
Genre:
ISBN:

Download The Reactivity of Energetic Materials At Extreme Conditions Book in PDF, ePub and Kindle

Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Although the history of HE materials is long, their condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary for efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In modeling HE materials there is a need to better understand the physical, chemical, and mechanical behaviors from fundamental theoretical principles. Among the quantities of interest in plastic-bonded explosives (PBXs), for example, are thermodynamic stabilities, reaction kinetics, equilibrium transport coefficients, mechanical moduli, and interfacial properties between HE materials and the polymeric binders. These properties are needed (as functions of stress state and temperature) for the development of improved micro-mechanical models, which represent the composite at the level of grains and binder. Improved micro-mechanical models are needed to describe the responses of PBXs to dynamic stress or thermal loading, thus yielding information for use in developing continuum models. Detailed descriptions of the chemical reaction mechanisms of condensed energetic materials at high densities and temperatures are essential for understanding events that occur at the reactive front under combustion or detonation conditions. Under shock conditions, for example, energetic materials undergo rapid heating to a few thousand degrees and are subjected to a compression of hundreds of kilobars, resulting in almost 30% volume reduction. Complex chemical reactions are thus initiated, in turn releasing large amounts of energy to sustain the detonation process. Clearly, understanding of the various chemical events at these extreme conditions is essential in order to build predictive material models. Scientific investigations into the reactive process have been undertaken over the past two decades. However, the sub-[mu]s time scale of explosive reactions, in addition to the highly exothermic conditions of an explosion, make experimental investigation of the decomposition pathways difficult at best. More recently, new computational approaches to investigate condensed-phase reactivity in energetic materials have been developed. Here we focus on two different approaches to condensed-phase reaction modeling: chemical equilibrium methods and atomistic modeling of condensed-phase reactions. These are complementary approaches to understanding the chemical reactions of high explosives. Chemical equilibrium modeling uses a highly simplified thermodynamic picture of the reaction process, leading to a convenient and predictive model of detonation and other decomposition processes. Chemical equilibrium codes are often used in the design of new materials, both at the level of synthesis chemistry and formulation. Atomistic modeling is a rapidly emerging area. The doubling of computational power approximately every 18 months has made atomistic condensed-phase modeling more feasible. Atomistic calculations employ far fewer empirical parameters than chemical equilibrium calculations. Nevertheless, the atomistic modeling of chemical reactions requires an accurate global Born-Oppenheimer potential energy surface. Traditionally, such a surface is constructed by representing the potential energy surface with an analytical fit. This approach is only feasible for simple chemical reactions involving a small number of atoms. More recently, first principles molecular dynamics, where the electronic Schroedinger equation is solved numerically at each configuration in a molecular dynamics simulation, has become the method of choice for treating complicated chemical reactions.


Energetic Materials

Energetic Materials
Author: John R. Sabin
Publisher: Academic Press
Total Pages: 357
Release: 2014-02-10
Genre: Science
ISBN: 0128004509

Download Energetic Materials Book in PDF, ePub and Kindle

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine. This volume presents a series of articles concerning current important topics in quantum chemistry. The invited articles are written by the best people in the field


Explosive Chemistry

Explosive Chemistry
Author:
Publisher:
Total Pages: 42
Release: 2003
Genre:
ISBN:

Download Explosive Chemistry Book in PDF, ePub and Kindle

In the brief instant of a high-explosive detonation, the shock wave produces a pressure 500,000 times that of the Earth's atmosphere, the detonation wave travels as fast as 10 kilometers per second, and internal temperatures soar up to 5,500 Kelvin. As the shock propagates through the energetic material, the rapid heating coupled with compression that results in almost 30% volume reduction, initiate complex chemical reactions. A dense, highly reactive supercritical fluid is established behind the propagating detonation front. Energy release from the exothermic chemical reactions serve in turn to drive and sustain the detonation process until complete reactivity is reached. Several experimental results suggest the existence of strong correlations between the applied mechanical stress and shocks, the local heterogeneity and defects (dislocations, vacancies, cracks, impurities, etc.), and the onset of chemical reactions. The reaction chemistry of energetic materials at high pressure and temperature is, therefore, of considerable importance in understanding processes that these materials experience under impact and detonation conditions. Chemical decomposition models are critical ingredients in order to predict, among other things, the measured times to explosion and the conditions for ignition of hot spots, localized regions of highly concentrated energy associated with defects. To date, chemical kinetic rates of condense-phase energetic materials at detonation conditions are virtually non-existent, and basic questions such as: (a) which bond in a given energetic molecule breaks first, and (b) what type of chemical reactions (unimolecular versus bimolecular, etc.) that dominate early in the decomposition process, are still largely unknown.


Chemistry at Extreme Conditions

Chemistry at Extreme Conditions
Author: M.R. Manaa
Publisher: Elsevier
Total Pages: 525
Release: 2005-03-02
Genre: Science
ISBN: 0080456995

Download Chemistry at Extreme Conditions Book in PDF, ePub and Kindle

Chemistry at Extreme Conditions covers those chemical processes that occur in the pressure regime of 0.5–200 GPa and temperature range of 500–5000 K and includes such varied phenomena as comet collisions, synthesis of super-hard materials, detonation and combustion of energetic materials, and organic conversions in the interior of planets. The book provides an insight into this active and exciting field of research. Written by top researchers in the field, the book covers state of the art experimental advances in high-pressure technology, from shock physics to laser-heating techniques to study the nature of the chemical bond in transient processes. The chapters have been conventionally organised into four broad themes of applications: biological and bioinorganic systems; Experimental works on the transformations in small molecular systems; Theoretical methods and computational modeling of shock-compressed materials; and experimental and computational approaches in energetic materials research. * Extremely practical book containing up-to-date research in high-pressure science * Includes chapters on recent advances in computer modelling* Review articles can be used as reference guide


Materials Under Extreme Conditions

Materials Under Extreme Conditions
Author: A. K. Tyagi
Publisher: Elsevier
Total Pages: 872
Release: 2017-01-13
Genre: Technology & Engineering
ISBN: 0128014423

Download Materials Under Extreme Conditions Book in PDF, ePub and Kindle

Materials Under Extreme Conditions: Recent Trends and Future Prospects analyzes the chemical transformation and decomposition of materials exposed to extreme conditions, such as high temperature, high pressure, hostile chemical environments, high radiation fields, high vacuum, high magnetic and electric fields, wear and abrasion related to chemical bonding, special crystallographic features, and microstructures. The materials covered in this work encompass oxides, non-oxides, alloys and intermetallics, glasses, and carbon-based materials. The book is written for researchers in academia and industry, and technologists in chemical engineering, materials chemistry, chemistry, and condensed matter physics. Describes and analyzes the chemical transformation and decomposition of a wide range of materials exposed to extreme conditions Brings together information currently scattered across the Internet or incoherently dispersed amongst journals and proceedings Presents chapters on phenomena, materials synthesis, and processing, characterization and properties, and applications Written by established researchers in the field


Molecular Modeling of the Sensitivities of Energetic Materials

Molecular Modeling of the Sensitivities of Energetic Materials
Author: Didier Mathieu
Publisher: Elsevier
Total Pages: 488
Release: 2022-04-01
Genre: Science
ISBN: 0128231106

Download Molecular Modeling of the Sensitivities of Energetic Materials Book in PDF, ePub and Kindle

Molecular Modeling of the Sensitivities of Energetic Materials, Volume 22 introduces experimental aspects, explores the relationships between sensitivity, molecular structure and crystal structure, discusses insights from numerical simulations, and highlights applications of these approaches to the design of new materials. Providing practical guidelines for implementing predictive models and their application to the search for new compounds, this book is an authoritative guide to an exciting field of research that warrants a computer-aided approach for the investigation and design of safe and powerful explosives or propellants. Much recent effort has been put into modeling sensitivities, with most work focusing on impact sensitivity and leading to a lot of experimental data in this area. Models must therefore be developed to allow evaluation of significant properties from the structure of constitutive molecules. Highlights a range of approaches for computational simulation and the importance of combining them to accurately understand or estimate different parameters Provides an overview of experimental findings and knowledge in a quick and accessible format Presents guidelines to implement sensitivity models using open-source python-related software, thus supporting easy implementation of flexible models and allowing fast assessment of hypotheses


Computational Approaches for Chemistry Under Extreme Conditions

Computational Approaches for Chemistry Under Extreme Conditions
Author: Nir Goldman
Publisher: Springer
Total Pages: 293
Release: 2019-02-18
Genre: Science
ISBN: 3030056007

Download Computational Approaches for Chemistry Under Extreme Conditions Book in PDF, ePub and Kindle

This book presents recently developed computational approaches for the study of reactive materials under extreme physical and thermodynamic conditions. It delves into cutting edge developments in simulation methods for reactive materials, including quantum calculations spanning nanometer length scales and picosecond timescales, to reactive force fields, coarse-grained approaches, and machine learning methods spanning microns and nanoseconds and beyond. These methods are discussed in the context of a broad range of fields, including prebiotic chemistry in impacting comets, studies of planetary interiors, high pressure synthesis of new compounds, and detonations of energetic materials. The book presents a pedagogical approach for these state-of-the-art approaches, compiled into a single source for the first time. Ultimately, the volume aims to make valuable research tools accessible to experimentalists and theoreticians alike for any number of scientific efforts, spanning many different types of compounds and reactive conditions.


Reviews in Computational Chemistry, Volume 25

Reviews in Computational Chemistry, Volume 25
Author: Kenny B. Lipkowitz
Publisher: John Wiley & Sons
Total Pages: 450
Release: 2007-11-02
Genre: Science
ISBN: 0470189061

Download Reviews in Computational Chemistry, Volume 25 Book in PDF, ePub and Kindle

VOLUME 25 Reviews in Computational Chemistry Kenny B. Lipkowitz and Thomas R. Cundari This Volume, Like Those Prior To It, Features Pedagogically Driven Reviews By Experts In Various Fields Of Computational Chemistry. Volume 25 Contains: Eight Chapters Covering The Glass Transition In Polymer Melts, Atomistic Modeling Of Friction, The Computation Of Free Volume, Structural Order And Entropy Of Liquids And Glasses, The Reactivity Of Materials At Extreme Conditions, Magnetic Properties Of Transition Metal Clusters, Multiconfigurational Quantum Methods For The Treatment Of Heavy Metals, Recursive Solutions To Large Eigenvalue Problems, And The Development And Uses Of Artificial Intelligence In Chemistry. From Reviews of the Series "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." -JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." -JOURNAL OF THE AMERICAN CHEMICAL SOCIETY


Energetic Materials

Energetic Materials
Author:
Publisher: Elsevier
Total Pages: 475
Release: 2003-11-21
Genre: Science
ISBN: 0080530915

Download Energetic Materials Book in PDF, ePub and Kindle

This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on explosives and propellants. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. The challenge of developing energetic materials that are less sensitive to accidental stimuli continues to be of critical importance. This volume opens with discussions of some determinants of sensitivity and its correlations with various molecular and crystal properties. The next several chapters deal in considerable detail with different aspects and mechanisms of the initiation of detonation, and its quantitative description. The second half of this volume focuses upon combustion. Extensive studies model ignition and combustion, with applications to different propellants. The final chapter is an exhaustive computational treatment of the mechanism and kinetics of combustion initiation reactions of ammonium perchlorate. Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field. - Overall emphasis is on theory and computation, presented in the context of relevant experimental work - Presents a unique state-of-the-art treatment of the subject - Contributors are preeminent researchers in the field