The Numerical Simulation Of Blade Vortex Interaction PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Numerical Simulation Of Blade Vortex Interaction PDF full book. Access full book title The Numerical Simulation Of Blade Vortex Interaction.

A Parametric Study of Transonic Blade-Vortex Interaction Noise

A Parametric Study of Transonic Blade-Vortex Interaction Noise
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 60
Release: 2018-07-02
Genre:
ISBN: 9781722140960

Download A Parametric Study of Transonic Blade-Vortex Interaction Noise Book in PDF, ePub and Kindle

Several parameters of transonic blade-vortex interactions (BVI) are being studied and some ideas for noise reduction are introduced and tested using numerical simulation. The model used is the two-dimensional high frequency transonic small disturbance equation with regions of distributed vorticity (VTRAN2 code). The far-field noise signals are obtained by using the Kirchhoff method with extends the numerical 2-D near-field aerodynamic results to the linear acoustic 3-D far-field. The BVI noise mechanisms are explained and the effects of vortex type and strength, and angle of attack are studied. Particularly, airfoil shape modifications which lead to noise reduction are investigated. The results presented are expected to be helpful for better understanding of the nature of the BVI noise and better blade design. Lyrintzis, A. S. Unspecified Center...


Full-Potential Modeling of Blade-Vortex Interactions

Full-Potential Modeling of Blade-Vortex Interactions
Author: Henry E. Jones
Publisher:
Total Pages: 96
Release: 1997
Genre: Unsteady flow (Aerodynamics)
ISBN:

Download Full-Potential Modeling of Blade-Vortex Interactions Book in PDF, ePub and Kindle

A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack methods, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. these comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generate results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.


Recent Asian Research on Thermal and Fluid Sciences

Recent Asian Research on Thermal and Fluid Sciences
Author: Abhilash Suryan
Publisher: Springer Nature
Total Pages: 693
Release: 2020-02-18
Genre: Technology & Engineering
ISBN: 9811518920

Download Recent Asian Research on Thermal and Fluid Sciences Book in PDF, ePub and Kindle

This book presents a collection of the best papers from the Seventh Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF7 2018), which was held in Trivandrum, India, in November 2018. The papers highlight research outputs from India, China, Japan, Korea and Bangladesh, and many of them report on collaborative efforts by researchers from these countries. The topics covered include Aero-Acoustics, Aerodynamics, Aerospace Engineering, Bio-Fluidics, Combustion, Flow Measurement, Control and Instrumentation, Fluid Dynamics, Heat and Mass Transfer, Thermodynamics, Mixing and Chemically Reacting Flows, Multiphase Flows, Micro/Nano Flows, Noise/NOx/SOx Reduction, Propulsion, Transonic and Supersonic Flows, and Turbomachinery. The book is one of the first on the topic to gather contributions from some of the leading countries in Asia. Given its scope, it will benefit researchers and students working on research problems in the thermal and fluid sciences.