The Metric Theory Of Tensor Products PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Metric Theory Of Tensor Products PDF full book. Access full book title The Metric Theory Of Tensor Products.

The Metric Theory of Tensor Products

The Metric Theory of Tensor Products
Author: Joseph Diestel
Publisher: Amer Mathematical Society
Total Pages: 278
Release: 2008
Genre: Mathematics
ISBN: 9780821844403

Download The Metric Theory of Tensor Products Book in PDF, ePub and Kindle

Grothendieck's Resume is a landmark in functional analysis. Despite having appeared more than a half century ago, its techniques and results are still not widely known nor appreciated. This is due, no doubt, to the fact that Grothendieck included practically no proofs, and the presentation is based on the theory of the very abstract notion of tensor products. This book aims at providing the details of Grothendieck's constructions and laying bare how the important classes of operators are a consequence of the abstract operations on tensor norms. Particular attention is paid to how the classical Banach spaces ($C(K)$'s, Hilbert spaces, and the spaces of integrable functions) fit naturally within the mosaic that Grothendieck constructed.


The Metric Theory of Tensor Products

The Metric Theory of Tensor Products
Author: Joseph Diestel
Publisher: American Mathematical Soc.
Total Pages: 294
Release: 2008-01-01
Genre: Mathematics
ISBN: 9780821872697

Download The Metric Theory of Tensor Products Book in PDF, ePub and Kindle

Famed mathematician Alexander Grothendieck, in his Resume, set forth his plan for the study of the finer structure of Banach spaces. He used tensor products as a foundation upon which he built the classes of operators most important to the study of Banach spaces and established the importance of the "local" theory in the study of these operators and the spaces they act upon. When Lintenstrauss and Pelczynski addressed his work at the rebirth of Banach space theory, they shed his Fundamental Inequality in the trappings of operator ideals by shedding the tensorial formulation. The authors of this book, however, feel that there is much of value in Grothendieck's original formulations in the Resume and here endeavor to "expose the Resume" by presenting most of Grothendieck's arguments using the mathematical tools that were available to him at the time.


The Metric Theory of Tensor Products

The Metric Theory of Tensor Products
Author: Joe Diestel
Publisher:
Total Pages: 278
Release: 2008
Genre: Banach spaces
ISBN: 9781470424831

Download The Metric Theory of Tensor Products Book in PDF, ePub and Kindle

Grothendieck's Resumé is a landmark in functional analysis. Despite having appeared more than a half century ago, its techniques and results are still not widely known nor appreciated. This is due, no doubt, to the fact that Grothendieck included practically no proofs, and the presentation is based on the theory of the very abstract notion of tensor products. This book aims at providing the details of Grothendieck's constructions and laying bare how the important classes of operators are a consequence of the abstract operations on tensor norms. Particular attention is paid to how the classical.


Introduction to Tensor Products of Banach Spaces

Introduction to Tensor Products of Banach Spaces
Author: Raymond A. Ryan
Publisher: Springer Science & Business Media
Total Pages: 229
Release: 2013-06-29
Genre: Mathematics
ISBN: 1447139038

Download Introduction to Tensor Products of Banach Spaces Book in PDF, ePub and Kindle

This is the first ever truly introductory text to the theory of tensor products of Banach spaces. Coverage includes a full treatment of the Grothendieck theory of tensor norms, approximation property and the Radon-Nikodym Property, Bochner and Pettis integrals. Each chapter contains worked examples and a set of exercises, and two appendices offer material on summability in Banach spaces and properties of spaces of measures.


Bilinear Maps and Tensor Products in Operator Theory

Bilinear Maps and Tensor Products in Operator Theory
Author: Carlos S. Kubrusly
Publisher: Springer Nature
Total Pages: 263
Release: 2023-12-18
Genre: Mathematics
ISBN: 3031340930

Download Bilinear Maps and Tensor Products in Operator Theory Book in PDF, ePub and Kindle

This text covers a first course in bilinear maps and tensor products intending to bring the reader from the beginning of functional analysis to the frontiers of exploration with tensor products. Tensor products, particularly in infinite-dimensional normed spaces, are heavily based on bilinear maps. The author brings these topics together by using bilinear maps as an auxiliary, yet fundamental, tool for accomplishing a consistent, useful, and straightforward theory of tensor products. The author’s usual clear, friendly, and meticulously prepared exposition presents the material in ways that are designed to make grasping concepts easier and simpler. The approach to the subject is uniquely presented from an operator theoretic view. An introductory course in functional analysis is assumed. In order to keep the prerequisites as modest as possible, there are two introductory chapters, one on linear spaces (Chapter 1) and another on normed spaces (Chapter 5), summarizing the background material required for a thorough understanding. The reader who has worked through this text will be well prepared to approach more advanced texts and additional literature on the subject. The book brings the theory of tensor products on Banach spaces to the edges of Grothendieck's theory, and changes the target towards tensor products of bounded linear operators. Both Hilbert-space and Banach-space operator theory are considered and compared from the point of view of tensor products. This is done from the first principles of functional analysis up to current research topics, with complete and detailed proofs. The first four chapters deal with the algebraic theory of linear spaces, providing various representations of the algebraic tensor product defined in an axiomatic way. Chapters 5 and 6 give the necessary background concerning normed spaces and bounded bilinear mappings. Chapter 7 is devoted to the study of reasonable crossnorms on tensor product spaces, discussing in detail the important extreme realizations of injective and projective tensor products. In Chapter 8 uniform crossnorms are introduced in which the tensor products of operators are bounded; special attention is paid to the finitely generated situation. The concluding Chapter 9 is devoted to the study of the Hilbert space setting and the spectral properties of the tensor products of operators. Each chapter ends with a section containing “Additional Propositions" and suggested readings for further studies.


Tensor Products of C*-Algebras and Operator Spaces

Tensor Products of C*-Algebras and Operator Spaces
Author: Gilles Pisier
Publisher: Cambridge University Press
Total Pages: 495
Release: 2020-02-27
Genre: Mathematics
ISBN: 1108786472

Download Tensor Products of C*-Algebras and Operator Spaces Book in PDF, ePub and Kindle

Based on the author's university lecture courses, this book presents the many facets of one of the most important open problems in operator algebra theory. Central to this book is the proof of the equivalence of the various forms of the problem, including forms involving C*-algebra tensor products and free groups, ultraproducts of von Neumann algebras, and quantum information theory. The reader is guided through a number of results (some of them previously unpublished) revolving around tensor products of C*-algebras and operator spaces, which are reminiscent of Grothendieck's famous Banach space theory work. The detailed style of the book and the inclusion of background information make it easily accessible for beginning researchers, Ph.D. students, and non-specialists alike.


Tensor Norms and Operator Ideals

Tensor Norms and Operator Ideals
Author: A. Defant
Publisher: Elsevier
Total Pages: 579
Release: 1992-11-26
Genre: Mathematics
ISBN: 0080872875

Download Tensor Norms and Operator Ideals Book in PDF, ePub and Kindle

The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exercises.


Tensor Categories

Tensor Categories
Author: Pavel Etingof
Publisher: American Mathematical Soc.
Total Pages: 344
Release: 2016-08-05
Genre: Algebraic topology
ISBN: 1470434415

Download Tensor Categories Book in PDF, ePub and Kindle

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.