The Mathematical Structure Of Classical And Relativistic Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Mathematical Structure Of Classical And Relativistic Physics PDF full book. Access full book title The Mathematical Structure Of Classical And Relativistic Physics.

The Mathematical Structure of Classical and Relativistic Physics

The Mathematical Structure of Classical and Relativistic Physics
Author: Enzo Tonti
Publisher: Springer Science & Business Media
Total Pages: 537
Release: 2013-09-07
Genre: Science
ISBN: 1461474221

Download The Mathematical Structure of Classical and Relativistic Physics Book in PDF, ePub and Kindle

The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics. The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories. Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.


The Logical Structure of Mathematical Physics

The Logical Structure of Mathematical Physics
Author: Joseph D. Sneed
Publisher: Springer Science & Business Media
Total Pages: 325
Release: 2012-12-06
Genre: Science
ISBN: 9401030669

Download The Logical Structure of Mathematical Physics Book in PDF, ePub and Kindle

This book is about scientific theories of a particular kind - theories of mathematical physics. Examples of such theories are classical and relativis tic particle mechanics, classical electrodynamics, classical thermodynamics, statistical mechanics, hydrodynamics, and quantum mechanics. Roughly, these are theories in which a certain mathematical structure is employed to make statements about some fragment of the world. Most of the book is simply an elaboration of this rough characterization of theories of mathematical physics. It is argued that each theory of mathematical physics has associated with it a certain characteristic mathematical struc ture. This structure may be used in a variety of ways to make empirical claims about putative applications of the theory. Typically - though not necessarily - the way this structure is used in making such claims requires that certain elements in the structure play essentially different roles. Some playa "theoretical" role; others playa "non-theoretical" role. For example, in classical particle mechanics, mass and force playa theoretical role while position plays a non-theoretical role. Some attention is given to showing how this distinction can be drawn and describing precisely the way in which the theoretical and non-theoretical elements function in the claims of the theory. An attempt is made to say, rather precisely, what a theory of mathematical physics is and how you tell one such theory from anothe- what the identity conditions for these theories are.


The Physical and Mathematical Foundations of the Theory of Relativity

The Physical and Mathematical Foundations of the Theory of Relativity
Author: Antonio Romano
Publisher: Springer Nature
Total Pages: 496
Release: 2019-09-25
Genre: Science
ISBN: 3030272370

Download The Physical and Mathematical Foundations of the Theory of Relativity Book in PDF, ePub and Kindle

This unique textbook offers a mathematically rigorous presentation of the theory of relativity, emphasizing the need for a critical analysis of the foundations of general relativity in order to best study the theory and its implications. The transitions from classical mechanics to special relativity and then to general relativity are explored in detail as well, helping readers to gain a more profound and nuanced understanding of the theory as a whole. After reviewing the fundamentals of differential geometry and classical mechanics, the text introduces special relativity, first using the physical approach proposed by Einstein and then via Minkowski’s mathematical model. The authors then address the relativistic thermodynamics of continua and electromagnetic fields in matter – topics which are normally covered only very briefly in other treatments – in the next two chapters. The text then turns to a discussion of general relativity by means of the authors’ unique critical approach, underlining the difficulty of recognizing the physical meaning of some statements, such as the physical meaning of coordinates and the derivation of physical quantities from those of space-time. Chapters in this section cover the model of space-time proposed by Schwarzschild; black holes; the Friedman equations and the different cosmological models they describe; and the Fermi-Walker derivative. Well-suited for graduate students in physics and mathematics who have a strong foundation in real analysis, classical mechanics, and general physics, this textbook is appropriate for a variety of graduate-level courses that cover topics in relativity. Additionally, it will interest physicists and other researchers who wish to further study the subtleties of these theories and understand the contemporary scholarly discussions surrounding them.


Classical Mathematical Physics

Classical Mathematical Physics
Author: Walter Thirring
Publisher: Springer Science & Business Media
Total Pages: 580
Release: 2003-10-17
Genre: Science
ISBN: 9780387406152

Download Classical Mathematical Physics Book in PDF, ePub and Kindle

This volume combines the enlarged and corrected editions of both volumes on classical physics of Thirring's famous course in mathematical physics. With numerous examples and remarks accompanying the text, it is suitable as a textbook for students in physics, mathematics, and applied mathematics. The treatment of classical dynamical systems uses analysis on manifolds to provide the mathematical setting for discussions of Hamiltonian systems, canonical transformations, constants of motion, and pertubation theory. Problems discussed in considerable detail include: nonrelativistic motion of particles and systems, relativistic motion in electromagnetic and gravitational fields, and the structure of black holes. The treatment of classical fields uses the language of differenial geometry throughout, treating both Maxwell's and Einstein's equations in a compact and clear fashion. The book includes discussions of the electromagnetic field due to known charge distributions and in the presence of conductors as well as a new section on gauge theories. It discusses the solutions of the Einstein equations for maximally symmetric spaces and spaces with maximally symmetric submanifolds; it concludes by applying these results to the life and death of stars.


Relativistic Quantum Mechanics

Relativistic Quantum Mechanics
Author: Hartmut Pilkuhn
Publisher: Springer Science & Business Media
Total Pages: 244
Release: 2013-06-29
Genre: Science
ISBN: 366205275X

Download Relativistic Quantum Mechanics Book in PDF, ePub and Kindle

In this book, quantum mechanics is developed from the outset on a relativistic basis, using the superposition principle, Lorentz invariance and gauge invariance. Nonrelativistic quantum mechanics appears as a special case, and classical relativistic mechanics as another one. These special cases are important for giving plausible names to operators, for example "orbital angular momentum", "spin" or "magnetic moment". A subject which is treated for the first time in this book is the theory of binaries in terms of differential equations which have the mathematical structure of the corresponding one-body equations (Klein--Gordon for two spin- less particles, Dirac for two spinor particles).


An Introduction to Hilbert Space and Quantum Logic

An Introduction to Hilbert Space and Quantum Logic
Author: David W. Cohen
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2012-12-06
Genre: Science
ISBN: 1461388414

Download An Introduction to Hilbert Space and Quantum Logic Book in PDF, ePub and Kindle

Historically, nonclassical physics developed in three stages. First came a collection of ad hoc assumptions and then a cookbook of equations known as "quantum mechanics". The equations and their philosophical underpinnings were then collected into a model based on the mathematics of Hilbert space. From the Hilbert space model came the abstaction of "quantum logics". This book explores all three stages, but not in historical order. Instead, in an effort to illustrate how physics and abstract mathematics influence each other we hop back and forth between a purely mathematical development of Hilbert space, and a physically motivated definition of a logic, partially linking the two throughout, and then bringing them together at the deepest level in the last two chapters. This book should be accessible to undergraduate and beginning graduate students in both mathematics and physics. The only strict prerequisites are calculus and linear algebra, but the level of mathematical sophistication assumes at least one or two intermediate courses, for example in mathematical analysis or advanced calculus. No background in physics is assumed.


Physics for Mathematicians

Physics for Mathematicians
Author: Michael Spivak
Publisher:
Total Pages: 733
Release: 2010
Genre: Mechanics
ISBN: 9780914098324

Download Physics for Mathematicians Book in PDF, ePub and Kindle


Mathematical Physics: Classical Mechanics

Mathematical Physics: Classical Mechanics
Author: Andreas Knauf
Publisher: Springer
Total Pages: 683
Release: 2018-02-24
Genre: Science
ISBN: 3662557746

Download Mathematical Physics: Classical Mechanics Book in PDF, ePub and Kindle

As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.


Classical Dynamics: A Modern Perspective

Classical Dynamics: A Modern Perspective
Author: E C George Sudarshan
Publisher: World Scientific Publishing Company
Total Pages: 612
Release: 2015-10-08
Genre: Science
ISBN: 9814713899

Download Classical Dynamics: A Modern Perspective Book in PDF, ePub and Kindle

Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of dynamical systems is discussed in detail, and Poisson brackets are developed as a realization of Lie brackets. Other topics include treatments of classical spin, elementary relativistic systems in the classical context, irreducible realizations of the Galileo and Poincaré groups, and hydrodynamics as a Galilean field theory. Students will also find that this approach that deals with problems of manifest covariance, the no-interaction theorem in Hamiltonian mechanics and the structure of action-at-a-distance theories provides all the essential preparatory groundwork for a passage to quantum field theory.This reprinting of the original text published in 1974 is a testimony to the vitality of the contents that has remained relevant over nearly half a century.


Relativity

Relativity
Author: Roger B. Angel
Publisher: Elsevier
Total Pages: 272
Release: 2014-05-20
Genre: Science
ISBN: 1483139263

Download Relativity Book in PDF, ePub and Kindle

Relativity: The Theory and its Philosophy provides a completely self-contained treatment of the philosophical foundations of the theory of relativity. It also surveys the most essential mathematical techniques and concepts that are indispensable to an understanding of the foundations of both the special and general theories of relativity. In short, the book includes a crash course in applied mathematics, ranging from elementary trigonometry to the classical tensor calculus. Comprised of 11 chapters, this book begins with an introduction to fundamental mathematical concepts such as sets, relations, and functions; N-tuples, vectors, and matrices; and vector algebra and calculus. The discussion then turns to the concept of relativity and elementary foundations of Newtonian mechanics, as well as the principle of special relativity and its philosophical interpretation by means of empiricism and rationalism. Subsequent chapters focus on the status of the doctrine of conventionalism in the theory of special relativity; the commensurability of classical and relativistic mechanics; mathematical foundations of special relativistic physics; and the classical or Newtonian theory of gravitation. The principle of general covariance and its relation to the principle of general relativity are also examined. The final chapter addresses the fundamental question as to the actual information concerning the structure of spacetime that is conveyed to us through the theory of general relativity. This monograph will be of interest to students, teachers, practitioners, and researchers in physics, mathematics, and philosophy.