The First Direct Measurement Of The Weak Charge Of The Proton PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The First Direct Measurement Of The Weak Charge Of The Proton PDF full book. Access full book title The First Direct Measurement Of The Weak Charge Of The Proton.

Q Weak

Q Weak
Author:
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

Download Q Weak Book in PDF, ePub and Kindle

The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. Finally, the results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.


Qweak

Qweak
Author:
Publisher:
Total Pages: 8
Release: 2014
Genre:
ISBN:

Download Qweak Book in PDF, ePub and Kindle

The Qweak experiment at Hall C of Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton, QWp, through a precision measurement of the parity-violating asymmetry in elastic e-p scattering at low momentum transfer Q2= 0.025 (GeV/c)2 with incident electron beam energy of 1.155 GeV. The Qweak experiment, along with earlier results of parity violating elastic scattering experiments, is expected to determine the most precise value of QWp which is suppressed in the Standard Model. If this result is further combined with the 133Cs atomic parity violation (APV) measurement, significant constraints on the weak charge of the up quark, down quark, and neutron can be extracted. This data will also be used to determine the weak-mixing angle, sin2?W, with a relative uncertainty of


The Weak Charge of the Proton

The Weak Charge of the Proton
Author:
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download The Weak Charge of the Proton Book in PDF, ePub and Kindle

The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q^2=0.025 (GeV/c)^2 in order to provide the first direct measurement of the proton?s weak charge, Qpw. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q^2 enables a theoretically clean measurement; the higher order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.


A Measurement of the Weak Charge of the Proton Through Parity Violating Electron Scattering Using the Qweak Apparatus

A Measurement of the Weak Charge of the Proton Through Parity Violating Electron Scattering Using the Qweak Apparatus
Author:
Publisher:
Total Pages: 251
Release: 2013
Genre:
ISBN:

Download A Measurement of the Weak Charge of the Proton Through Parity Violating Electron Scattering Using the Qweak Apparatus Book in PDF, ePub and Kindle

After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Qp̂_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken on an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q2̂ = 0.0250 +/- 0.0006 (GeV)2̂. From this a 21% measurement of the weak charge of the proton, Q_wp̂(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin2̂theta_W(msr)= +0.2328 +/- 0.0039 (stat.) +/- 0.0033 (syst.) +/- 0.0004 (theory) and improved constraints on isoscalar/isovector effective coupling constants of the weak neutral hadronic currents are extracted. These results deviate from the Standard Model by one standard deviation. The Wien0 results are a proof of principle of the Qweak data analysis and a highlight of the road ahead for obtaining full results.


First Determination of the Weak Charge of the Proton

First Determination of the Weak Charge of the Proton
Author: Fang Guo (Ph. D.)
Publisher:
Total Pages: 188
Release: 2016
Genre:
ISBN:

Download First Determination of the Weak Charge of the Proton Book in PDF, ePub and Kindle

The Qweak experiment measures the parity violating asymmetry in elastic e[upper script right arrow]p scattering at Q2 = 0.02455 (GeV/c)2 with a 180 [mu]A and 88.7% longitudinally polarized electron beam of 1.165 GeV and a 34.4 cm liquid hydrogen target in experimental Hall C at Jefferson Lab. As the Q2 at the Qweak experiment is much lower than all previous experiments, the Qweak measurement can be considered as the first direct determination of the weak charge of the proton, Qp/w, which is related to the weak mixing angle, sin2 [theta]w, an important Standard Model parameter. The preliminary and blinded asymmetry of the Run 2 data set, which constitutes approximately 60% of all the data collected in the experiment, is Aep/PV = -232.7 +/- 8.7 (stat) +/- 6.4 (syst) ppb. The value of Qp/w obtained by fitting this blinded asymmetry and earlier parity violating electron scattering (PVES) data at higher Q2 is Qp/w (PVES) = 0.0705 +/- 0.0051. When combining this result with the 133Cs atomic parity violation (APV) measurement, further constraints can be placed on the neutral weak quark coupling constants C1u and C1d. The combined PVES and APV analysis yields the blinded neutron's weak charge to be Qn/w (PVES+APV) = -0.9798 +/- 0.0065. The Qweak experiment also measures the parity violating asymmetry in nonresonance inelastic e[upper script right arrow]p scattering at Q2 ~/= 0.09 (GeV/c)2 with 3.35 GeV electron beams to provide inputs for the [gamma]Z box calculation. The preliminary measured inelastic asymmetry is Aep/inelastic-PV = 2.91 +/- 0.35 ppm.


Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N 2![Delta] Transition

Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N 2![Delta] Transition
Author:
Publisher:
Total Pages: 217
Release: 2012
Genre:
ISBN:

Download Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N 2![Delta] Transition Book in PDF, ePub and Kindle

Qweak will determine the weak charge of the proton, Qp{sub W}, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. QpW has a firm Standard Model prediction and is related to the weak mixing angle, sin2 [Phi]W, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysis of an auxiliary measurement of the parity-violating asymmetry in the N → [Delta] transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, d[Delta]. The elastic asymmetry at Q2 = 0.0252 ± 0.0007 GeV2 was measured to be Aep = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q2 = 0, the value of the proton's weak charge was measured to be QpW = 0.077 ± 0.019 (stat. and sys.) ± 0.026 (blinding). This is within 1 [sigma] of the Standard Model prediction of QpW = 0.0705 ± 0.0008. The N → [Delta] inelastic asymmetry at Q2 = 0.02078 ± 0.0005 GeV2 and W = 1205 MeV was measured to be Ainel = -3.03 ± 0.65 ± 0.73 ± 0.07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be d[Delta] = 5.8 ± 22g[pi], and, if the result of the G0 experiment is included, d[Delta] = 5.8 ± 17g[pi]. This result rules out suggested large values of d[Delta] motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second measurement of the neutral current excitation of the [Delta]resonance. It is currently the best constraint for the low energy constant, d[Delta].


Determination of the Proton's Weak Charge Via Parity Violating Electron Scattering

Determination of the Proton's Weak Charge Via Parity Violating Electron Scattering
Author:
Publisher:
Total Pages: 202
Release: 2015
Genre:
ISBN:

Download Determination of the Proton's Weak Charge Via Parity Violating Electron Scattering Book in PDF, ePub and Kindle

The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q2=0.025 (GeV/c)2 in order to provide the first direct measurement of the proton's weak charge, Qpw. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q2 enables a theoretically clean measurement; the higher order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.


First Determination of the Weak Charge of the Proton

First Determination of the Weak Charge of the Proton
Author:
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download First Determination of the Weak Charge of the Proton Book in PDF, ePub and Kindle

The Qweak experiment has measured the parity-violating asymmetry in polarized e-p elastic scattering at Q2 = 0.025(GeV/c)2, employing 145 microamps of 89% longitudinally polarized electrons on a 34.4cm long liquid hydrogen target at Jefferson Lab. The results of the experiment's commissioning run are reported here, constituting approximately 4% of the data collected in the experiment. From these initial results the measured asymmetry is Aep = -279 +- 35 (statistics) +- 31 (systematics) ppb, which is the smallest and most precise asymmetry ever measured in polarized e-p scattering. The small Q2 of this experiment has made possible the first determination of the weak charge of the proton, QpW, by incorporating earlier parity-violating electron scattering (PVES) data at higher Q2 to constrain hadronic corrections. The value of QpW obtained in this way is QnW(PVES) = 0.064 +- 0.012, in good agreement with the Standard Model prediction of QpW(SM) = 0.0710 +- 0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES+APV analysis reveals the neutron's weak charge to be QnW(PVES+APV) = -0.975 +- 0.010.