The Current Status And Future Direction Of High Magnetic Field Science And Technology In The United States PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Current Status And Future Direction Of High Magnetic Field Science And Technology In The United States PDF full book. Access full book title The Current Status And Future Direction Of High Magnetic Field Science And Technology In The United States.

The Current Status and Future Direction of High-Magnetic-Field Science and Technology in the United States

The Current Status and Future Direction of High-Magnetic-Field Science and Technology in the United States
Author: National Academies of Sciences Engineering and Medicine
Publisher:
Total Pages: 0
Release: 2025-05-13
Genre: Science
ISBN: 9780309721776

Download The Current Status and Future Direction of High-Magnetic-Field Science and Technology in the United States Book in PDF, ePub and Kindle

High magnetic fields are a vital tool in many areas of science and technology that impact our everyday lives. Magnetic resonance imaging enables a wide range of medical diagnostics and research, while nuclear magnetic resonance is critical for drug discovery research and more. High magnetic fields are an essential component to many proposed fusion energy reactors and are necessary to push the boundaries towards the development of new quantum technologies and semiconductors. At the request of the National Science Foundation, the National Academies organized a study to identify scientific opportunities and key applications for high-magnetic-field science and technology for the next decade and beyond. This report explores the current state and future prospects for high-magnetic-field technologies and recommends actions to support the workforce, facilities, magnet development, and critical materials access necessary to promote U.S. innovation.


High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States
Author: National Research Council
Publisher: National Academies Press
Total Pages: 233
Release: 2013-11-25
Genre: Science
ISBN: 0309286379

Download High Magnetic Field Science and Its Application in the United States Book in PDF, ePub and Kindle

The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.


High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States
Author: National Research Council
Publisher: National Academies Press
Total Pages: 233
Release: 2013-12-25
Genre: Science
ISBN: 0309286344

Download High Magnetic Field Science and Its Application in the United States Book in PDF, ePub and Kindle

The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.


High Magnetic Field Science and Its Application in the United States

High Magnetic Field Science and Its Application in the United States
Author: Board on Physics
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download High Magnetic Field Science and Its Application in the United States Book in PDF, ePub and Kindle

Annotation. The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.


Opportunities in High Magnetic Field Science

Opportunities in High Magnetic Field Science
Author: National Research Council
Publisher: National Academies Press
Total Pages: 188
Release: 2005-07-26
Genre: Science
ISBN: 0309165318

Download Opportunities in High Magnetic Field Science Book in PDF, ePub and Kindle

High-field magnetsâ€"those that operate at the limits of the mechanical and/or electromagnetic properties of their structural materialsâ€"are used as research tools in a variety of scientific disciplines. The study of high magnetic fields themselves is also important in many areas such as astrophysics. Because of their importance in scientific research and the possibility of new breakthroughs, the National Science Foundation asked the National Research Council to assess the current state of and future prospects for high-field science and technology in the United States. This report presents the results of that assessment. It focuses on scientific and technological challenges and opportunities, and not on specific program activities. The report provides findings and recommendations about important research directions, the relative strength of U.S. efforts compared to other countries, and ways in which the program can operate more effectively.


Superfluidity

Superfluidity
Author: Fouad Sabry
Publisher: One Billion Knowledgeable
Total Pages: 297
Release: 2022-01-17
Genre: Technology & Engineering
ISBN:

Download Superfluidity Book in PDF, ePub and Kindle

What Is Superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity. The theory of superfluidity was developed by Soviet theoretical physicists Lev Landau and Isaak Khalatnikov. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Superfluidity Chapter 2: Superfluid vacuum theory Chapter 3: Boojum (superfluidity) Chapter 4: Condensed matter physics Chapter 5: Macroscopic quantum phenomena Chapter 6: Quantum hydrodynamics Chapter 7: Materials science (II) Answering the public top questions about superfluidity. (III) Real world examples for the usage of superfluidity in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of superfluidity' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of superfluidity.


Frontiers of Materials Research

Frontiers of Materials Research
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 295
Release: 2019-08-12
Genre: Technology & Engineering
ISBN: 0309483905

Download Frontiers of Materials Research Book in PDF, ePub and Kindle

Modern materials science builds on knowledge from physics, chemistry, biology, mathematics, computer and data science, and engineering sciences to enable us to understand, control, and expand the material world. Although it is anchored in inquiry-based fundamental science, materials research is strongly focused on discovering and producing reliable and economically viable materials, from super alloys to polymer composites, that are used in a vast array of products essential to today's societies and economies. Frontiers of Materials Research: A Decadal Survey is aimed at documenting the status and promising future directions of materials research in the United States in the context of similar efforts worldwide. This third decadal survey in materials research reviews the progress and achievements in materials research and changes in the materials research landscape over the last decade; research opportunities for investment for the period 2020-2030; impacts that materials research has had and is expected to have on emerging technologies, national needs, and science; and challenges the enterprise may face over the next decade.


Time Crystal

Time Crystal
Author: Fouad Sabry
Publisher: One Billion Knowledgeable
Total Pages: 333
Release: 2022-01-17
Genre: Technology & Engineering
ISBN:

Download Time Crystal Book in PDF, ePub and Kindle

What Is Time Crystal In condensed matter physics, a time crystal is a quantum system of particles whose lowest-energy state is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is already in its quantum ground state. Because of this the motion of the particles does not really represent kinetic energy like other motion, it has "motion without energy". Time crystals were first proposed theoretically by Frank Wilczek in 2012 as a time-based analogue to common crystals whereas the atoms in crystals are arranged periodically in space, the atoms in a time crystal are arranged periodically in both space and time. Several different groups have demonstrated matter with stable periodic evolution in systems that are periodically driven. In terms of practical use, time crystals may one day be used as quantum memories. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Time crystal Chapter 2: Time translation symmetry Chapter 3: Crystal structure Chapter 4: Spontaneous symmetry breaking Chapter 5: Condensed matter physics Chapter 6: Quantum mechanics Chapter 7: Zero-point energy (II) Answering the public top questions about time crystal. (III) Real world examples for the usage of time crystal in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of time crystal' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of time crystal.


Theoretical and Practical Teaching Strategies for K-12 Science Education in the Digital Age

Theoretical and Practical Teaching Strategies for K-12 Science Education in the Digital Age
Author: Trumble, Jason
Publisher: IGI Global
Total Pages: 316
Release: 2023-01-17
Genre: Education
ISBN: 1668455862

Download Theoretical and Practical Teaching Strategies for K-12 Science Education in the Digital Age Book in PDF, ePub and Kindle

Digital age learners come to the science classroom equipped with a wide range of skills and a wealth of information at their fingertips. Although science and technology have enjoyed a symbiotic relationship, the ubiquity of information technologies requires teachers to modify instruction and experiences for K-12 science learners. Environmental and societal changes have impacted how and when students acquire and synthesize knowledge. These changes compel us to modify and adjust to improve the practice of teaching science to meet the unique needs of students who are growing up in a society dominated by connected digital devices, constant communication, and the ubiquity of information. Theoretical and Practical Teaching Strategies for K-12 Science Education in the Digital Age disseminates theory-informed practices for science teachers that increase their instructional effectiveness in teaching digital age learners. It communicates how to increase science educators’ understandings of the needs of digital age learners, develops theoretical and practical teaching strategies that align with science content, and integrates technologies for learning with fidelity. Covering topics such as design-based inclusive science, project-based learning, and science instruction, this premier reference source is an excellent resource for administrators and science educators within K-12 education, pre-service teachers, teacher educators, librarians, researchers, and academicians.


Achieving Science with CubeSats

Achieving Science with CubeSats
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 131
Release: 2016-10-06
Genre: Science
ISBN: 0309442664

Download Achieving Science with CubeSats Book in PDF, ePub and Kindle

Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.