The Behavior Of Fiber Reinforced Concrete Beam Column Joints Subjected To Earthquake Type Loading PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Behavior Of Fiber Reinforced Concrete Beam Column Joints Subjected To Earthquake Type Loading PDF full book. Access full book title The Behavior Of Fiber Reinforced Concrete Beam Column Joints Subjected To Earthquake Type Loading.

Cyclic Loading Behavior of CFRP-Wrapped Non-Ductile Reinforced Concrete Beam-Column Joints

Cyclic Loading Behavior of CFRP-Wrapped Non-Ductile Reinforced Concrete Beam-Column Joints
Author:
Publisher:
Total Pages: 189
Release: 2016
Genre: Carbon fiber-reinforced plastics
ISBN:

Download Cyclic Loading Behavior of CFRP-Wrapped Non-Ductile Reinforced Concrete Beam-Column Joints Book in PDF, ePub and Kindle

Use of fiber reinforced polymer (FRP) material has been a good solution for many problems in many fields. FRP is available in different types (carbon and glass) and shapes (sheets, rods, and laminates). Civil engineers have used this material to overcome the weakness of concrete members that may have been caused by substandard design or due to changes in the load distribution or to correct the weakness of concrete structures over time specially those subjected to hostile weather conditions. The attachment of FRP material to concrete surfaces to promote the function of the concrete members within the frame system is called Externally Bonded Fiber Reinforced Polymer Systems. Another common way to use the FRP is called Near Surface Mounted (NSM) whereby the material is inserted into the concrete members through grooves within the concrete cover. Concrete beam-column joints designed and constructed before 1970s were characterized by weak column-strong beam. Lack of transverse reinforcement within the joint reign, hence lack of ductility in the joints, and weak concrete could be one of the main reasons that many concrete buildings failed during earthquakes around the world. A technique was used in the present work to compensate for the lack of transverse reinforcement in the beam-column joint by using the carbon fiber reinforced polymer (CFRP) sheets as an Externally Bonded Fiber Reinforced Polymer System in order to retrofit the joint region, and to transfer the failure to the concrete beams. Six specimens in one third scale were designed, constructed, and tested. The proposed retrofitting technique proved to be very effective in improving the behavior of non-ductile beam-column joints, and to change the final mode of failure. The comparison between beam-column joints before and after retrofitting is presented in this study as exhibited by load versus deflection, load versus CFRP strain, energy dissipation, and ductility.


State-of-the-art Review of Seismic Behavior of Deficient and Retrofitted Reinforced Concrete Beam Column Joints

State-of-the-art Review of Seismic Behavior of Deficient and Retrofitted Reinforced Concrete Beam Column Joints
Author: Robert B. Lotus
Publisher:
Total Pages: 158
Release: 2011
Genre:
ISBN: 9781124677545

Download State-of-the-art Review of Seismic Behavior of Deficient and Retrofitted Reinforced Concrete Beam Column Joints Book in PDF, ePub and Kindle

Beam-column joint is considered a critical region in a structure when subjected to seismic load. Past earthquakes have shown that many of these structures behaved poorly and exhibited a combination of brittle failure at the joint and pullout of the beam longitudinal steel, leading to a rapid degradation of the joint and a precursor to a catastrophic collapse of a structure. Review of existing structures built prior to 1976 have determined concrete joints typically have little or no transverse reinforcement, discontinuous bottom beam reinforcement with insufficient embedment depth, and a common occurrence of column lap splice above the beam-column interface. Previous studies of rebar bond slip behavior, joint shear response, and joint interface - shear response were reviewed culminating in a study of various joint models simulating the behavior of deficient concrete beam-column joint subjected to a seismic load. An experimental test program consisting of three specimens was developed to test the behavior of deficient concrete beam-column joints. Specimen AB1 consists of deficient shear reinforcement at the joint, and will be tested to evaluate the behavior of a deficient reinforced concrete beam-column joint solely on insufficient shear reinforcement. Specimen AB2 is designed according to pre-1976 building standard and lacks sufficient rebar embedment of longitudinal beam reinforcement at the joint and has no shear reinforcement within the joint area. Specimen ACI318 is designed per the specifications of ACI 318-08, and will be used as the control specimen. Experimental results of the test program will eventually be applied as a baseline comparison to proposed state-of-the-art retrofit schemes aimed at enhancing the overall seismic performance of deficient reinforced concrete beam-column joints.


Strength and Behavior of Reinforced Concrete Slab-column Connections Subjected to Static and Dynamic Loadings

Strength and Behavior of Reinforced Concrete Slab-column Connections Subjected to Static and Dynamic Loadings
Author: Marvin E. Criswell
Publisher:
Total Pages: 434
Release: 1970
Genre: Columns, Concrete
ISBN:

Download Strength and Behavior of Reinforced Concrete Slab-column Connections Subjected to Static and Dynamic Loadings Book in PDF, ePub and Kindle

The objectives of this investigation were to study the strength and behavior of slowly (statically) loaded reinforced concrete slab-column connections and to determine the effect of rapid (dynamic) loading on the strength and behavior by comparison with the static test results. Nineteen full-scale models of a connection and adjoining slab area, consisting of a simply supported slab 84 or 94 inches square and 6-1/2 inches thick loaded concentrically on a 10- or 20-inch-square stub column at the center of the slab, were tested. The main variables were the amounts of reinforcement in the slab (p = 0.75 and 1.50 percent), the column size, and the loading speed. Eight specimens were loaded to failure statically, two were subjected to a very rapidly applied load of short duration, and nine were loaded to failure by a rapidly applied load with a rise time chosen to represent the conditions in a blast-loaded structure. The static test results are compared with 12 shear strength prediction methods. Differences between the mechanism of shear failure in slabs and beams are examined. (Author).


Evaluation and Prediction of Shear Behavior of Reinforced Concrete Beam-column Joints

Evaluation and Prediction of Shear Behavior of Reinforced Concrete Beam-column Joints
Author: Firat Alemdar
Publisher:
Total Pages: 310
Release: 2007
Genre: Buildings
ISBN:

Download Evaluation and Prediction of Shear Behavior of Reinforced Concrete Beam-column Joints Book in PDF, ePub and Kindle

Abstract: Beam-column joints are one of the most critical elements of reinforced concrete moment resisting frames subjected to lateral seismic loading. The older reinforced concrete buildings designed before the introduction of modern seismic codes in the early 1970's, in general, do not meet the current design code requirements. In particular, the beam-column joints in such existing buildings do not have appropriate detailing which leads to insufficient lateral strength or ductility to withstand the effects of a severe earthquake loading. Therefore, evaluation of the lateral load carrying capacity of existing buildings for subsequent retrofit is very important for the safety of the buildings. The economical aspect should also be considered during the design of a structure which is only possible if the behavior of the structure during an earthquake can be predicted. The focus of this research is to evaluate the shear behavior of reinforced concrete beam-column joints and to develop a suitable model that would predict the lateral load carrying capacity. Previous experimental studies and results have shown that the shear strength of beam-column joints depends on several variables including concrete strength, axial load ratio, joint geometry joint transverse reinforcement ratio, and displacement ductility. However, the current codes include the effects of all of these parameters in beam-column joint design. Therefore, previous analytical research is examined and this information is used to develop a shear strength model. The proposed model is mainly based on the shear strength model for columns developed by Sezen and Moehle (2004). The proposed shear strength model is verified with experimental test results. Overall, the model did a reasonable job of predicting the shear strength of reinforced concrete beam-column joints. The proposed model provides a simply tool for the analysis of existing reinforced concrete buildings subjected to lateral loading and to determine the amount of remediation necessary for satisfactory seismic performance.