Target Experimental Area And Systems Of The Us National Ignition Facility PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Target Experimental Area And Systems Of The Us National Ignition Facility PDF full book. Access full book title Target Experimental Area And Systems Of The Us National Ignition Facility.

Target Experimental Area and Systems of the U.S. National Ignition Facility

Target Experimental Area and Systems of the U.S. National Ignition Facility
Author:
Publisher:
Total Pages:
Release: 1999
Genre:
ISBN:

Download Target Experimental Area and Systems of the U.S. National Ignition Facility Book in PDF, ePub and Kindle

One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools.


The National Ignition Facility

The National Ignition Facility
Author: G. H. Miller
Publisher:
Total Pages:
Release: 2003
Genre:
ISBN:

Download The National Ignition Facility Book in PDF, ePub and Kindle

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10{sup 8} K and 10{sup 11} bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper discusses NIF's current and future experimental capability, plans for facility diagnostics, cryogenic target systems, specialized optics for experiments, and potential enhancements to NIF such as green laser operation and high-energy short pulse operation.


The National Ignition Facility

The National Ignition Facility
Author:
Publisher:
Total Pages:
Release: 2002
Genre:
ISBN:

Download The National Ignition Facility Book in PDF, ePub and Kindle

The National Ignition Facility (NIF), currently under construction at the University of California's Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, 351-nm laser system and a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF is being built by the National Nuclear Security Administration and when completed will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions where they will ignite and burn, liberating more energy than required to initiate the fusion reactions. NIF experiments will allow the study of physical processes at temperatures approaching 100 million K and 100 billion times atmospheric pressure. These conditions exist naturally only in the interior of stars and in nuclear weapons explosions. In the course of designing the world's most energetic laser system, a number of significant technology breakthroughs have been achieved. NIF is now entering the first phases of its laser commissioning program. Low-energy preamplifier rod laser shots have been successfully propagated through the entire laser chain. Higher energy shots are planned through the end of 2002. NIF's target experimental systems are also being installed in preparation for laser performance and experimental capability commissioning starting in 2003.


Design of the Target Area for the National Ignition Facility

Design of the Target Area for the National Ignition Facility
Author:
Publisher:
Total Pages: 15
Release: 1997
Genre:
ISBN:

Download Design of the Target Area for the National Ignition Facility Book in PDF, ePub and Kindle

The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described.


The National Ignition Facility

The National Ignition Facility
Author:
Publisher:
Total Pages: 3
Release: 2011
Genre:
ISBN:

Download The National Ignition Facility Book in PDF, ePub and Kindle

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm3-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.


Overview of the National Ignition Facility

Overview of the National Ignition Facility
Author:
Publisher:
Total Pages: 8
Release: 2007
Genre:
ISBN:

Download Overview of the National Ignition Facility Book in PDF, ePub and Kindle

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory will be the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF is a 192 beam Nd-glass laser facility that will produce 1.8 MJ, 500 TW of ultraviolet light making it over fifty times more energetic than present ICF facilities. The NIF Project began in 1995 and is scheduled for completion in 2009. Ignition experiments on NIF, which will use tritium, are scheduled to begin in 2010. Tritium will arrive at the facility in individual target assemblies. The assemblies will be mounted to the Cryogenic TARget POSitioner (TARPOS), which provides the cryogenic cooling systems necessary to complete the formation of the ignition target's fuel ice layer. It also provides the positioning system that transports and holds the target at the center of the NIF chamber during a shot. After a shot, unburned tritium will be captured by the cryopumps. Upon regeneration, the cryopump effluent will be directed to the Tritium Processing System, part of NIF's. Personnel and Environmental Protection Systems. These systems also include, local contamination control systems, area and stack tritium monitoring systems, a decontamination area, and waste packaging and characterization capability. This equipment will be used along with standard contamination control practices to manage the tritium hazard to workers and to limit releases to the environment to negligibly small amounts.


Stockpile Stewardship and the National Ignition Facility

Stockpile Stewardship and the National Ignition Facility
Author:
Publisher:
Total Pages: 12
Release: 2012
Genre:
ISBN:

Download Stockpile Stewardship and the National Ignition Facility Book in PDF, ePub and Kindle

The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 1014 neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.


Assessment of Inertial Confinement Fusion Targets

Assessment of Inertial Confinement Fusion Targets
Author: National Research Council
Publisher: National Academies Press
Total Pages: 119
Release: 2013-07-17
Genre: Science
ISBN: 0309270626

Download Assessment of Inertial Confinement Fusion Targets Book in PDF, ePub and Kindle

In the fall of 2010, the Office of the U.S. Department of Energy's (DOE's) Secretary for Science asked for a National Research Council (NRC) committee to investigate the prospects for generating power using inertial confinement fusion (ICF) concepts, acknowledging that a key test of viability for this concept-ignition -could be demonstrated at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in the relatively near term. The committee was asked to provide an unclassified report. However, DOE indicated that to fully assess this topic, the committee's deliberations would have to be informed by the results of some classified experiments and information, particularly in the area of ICF targets and nonproliferation. Thus, the Panel on the Assessment of Inertial Confinement Fusion Targets ("the panel") was assembled, composed of experts able to access the needed information. The panel was charged with advising the Committee on the Prospects for Inertial Confinement Fusion Energy Systems on these issues, both by internal discussion and by this unclassified report. A Panel on Fusion Target Physics ("the panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the Committee") and will prepare a report that describes the R&D challenges to providing suitable targets, on the basis of parameters established and provided to the Panel by the Committee. The Panel on Fusion Target Physics will prepare a report that will assess the current performance of fusion targets associated with various ICF concepts in order to understand: 1. The spectrum output; 2. The illumination geometry; 3. The high-gain geometry; and 4. The robustness of the target design. The panel addressed the potential impacts of the use and development of current concepts for Inertial Fusion Energy on the proliferation of nuclear weapons information and technology, as appropriate. The Panel examined technology options, but does not provide recommendations specific to any currently operating or proposed ICF facility.


Target Support for Inertial Confinement Fusion

Target Support for Inertial Confinement Fusion
Author:
Publisher:
Total Pages: 4
Release: 1995
Genre:
ISBN:

Download Target Support for Inertial Confinement Fusion Book in PDF, ePub and Kindle

General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF).