Target Diagnostic System For The National Ignition Facility Nif PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Target Diagnostic System For The National Ignition Facility Nif PDF full book. Access full book title Target Diagnostic System For The National Ignition Facility Nif.

Target Diagnostic System for the National Ignition Facility (NIF).

Target Diagnostic System for the National Ignition Facility (NIF).
Author:
Publisher:
Total Pages: 41
Release: 1996
Genre:
ISBN:

Download Target Diagnostic System for the National Ignition Facility (NIF). Book in PDF, ePub and Kindle

A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.


Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF).

Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF).
Author:
Publisher:
Total Pages: 5
Release: 2007
Genre:
ISBN:

Download Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF). Book in PDF, ePub and Kindle

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics to diagnose fusion ignition implosion and neutron emissions are being planned. Many diagnostics will be developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. An instrument-based controls (I-BC) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the I-BC architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. I-BCs are reusable by replication and reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and better reliability. Collaborators save costs by assembling diagnostics with existing I-BCs. This paper discusses target diagnostic instrumentation used on NIF and presents the I-BC architecture and framework.


Target Diagnostics Supports NIF's Path to Ignition

Target Diagnostics Supports NIF's Path to Ignition
Author:
Publisher:
Total Pages: 5
Release: 2011
Genre:
ISBN:

Download Target Diagnostics Supports NIF's Path to Ignition Book in PDF, ePub and Kindle

The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by the RAGS system. Three new instrument controllers were developed and commissioned to support this diagnostic. A residual-gas analyzer (RGA) instrument measures the gas content at various points in the system. The Digital Gamma Spectrometer instrument measures the radiological spectrum of the decaying gas isotopes. A final instrument controller was developed to interface to a PLC based Gas collection system. In order to support the implosion velocity measurements an additional Gated X-ray Detector (GXD) diagnostic was tested and commissioned. This third GXD views the target through a slit contained in its snout and allows the other GXD diagnostics to be used for measuring the shape on the same shot. In order to measure the implosion shape in a high neutron environment, Actide Readout In A Neutron Environment (ARIANE) and Neutron Imaging (NI) diagnostics were commissioned. The controls for ARIANE, a fixed port gated x-ray imager, contain a neutron shielded camera and micro channel plate pulser with its neutron sensitive electronics located in the diagnostic mezzanine. The NI diagnostic is composed of two Spectral Instruments SI-1000 cameras located 20M from the target and provides neutron images of the DT hot spot for high yield shots. The development and commissioning of these new or enhanced diagnostics in FY11 have provided meaningful insight that facilitates the optimization of the four key Ignition variables. In FY12 they will be adding three new diagnostics and enhancing four existing diagnostics in support of the continuing optimization series of campaigns.


Target Diagnostic Control System Implementation for the National Ignition Facility

Target Diagnostic Control System Implementation for the National Ignition Facility
Author:
Publisher:
Total Pages: 5
Release: 2010
Genre:
ISBN:

Download Target Diagnostic Control System Implementation for the National Ignition Facility Book in PDF, ePub and Kindle

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A Diagnostic Control System (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.


Use of the Target Diagnostic Control System in the National Ignition Facility

Use of the Target Diagnostic Control System in the National Ignition Facility
Author:
Publisher:
Total Pages: 7
Release: 2011
Genre:
ISBN:

Download Use of the Target Diagnostic Control System in the National Ignition Facility Book in PDF, ePub and Kindle

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.


Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility
Author:
Publisher:
Total Pages: 8
Release: 2007
Genre:
ISBN:

Download Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility Book in PDF, ePub and Kindle

NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the deployed hardware and software. Since the same instruments are commonly used on many different diagnostics, the controllers are reusable by replicating the hardware and software as a unit and reconfiguring the controller using configuration files for the specific diagnostic. Diagnostics are fully integrated and interoperable with ICCS supervisory and shot controls using these configuration files to drive the diagnostics' instrument-based controllers.


Target Experimental Area and Systems of the U.S. National Ignition Facility

Target Experimental Area and Systems of the U.S. National Ignition Facility
Author:
Publisher:
Total Pages:
Release: 1999
Genre:
ISBN:

Download Target Experimental Area and Systems of the U.S. National Ignition Facility Book in PDF, ePub and Kindle

One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools.


Beam Diagnostics Systems for the National Ignition Facility

Beam Diagnostics Systems for the National Ignition Facility
Author:
Publisher:
Total Pages:
Release: 2001
Genre:
ISBN:

Download Beam Diagnostics Systems for the National Ignition Facility Book in PDF, ePub and Kindle

The National Ignition Facility (NIF) laser focuses 1.8 megajoules of ultraviolet light (wavelength 351 nanometers) from 192 beams into a 600-micrometer-diameter volume. Effective use of this output in target experiments requires that the power output from all of the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beamline contains 110 major optical components distributed over a 510-meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the interbeam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at three locations along each beamline using 335 photodiodes, 215 calorimeters, and 36 digitizers. Successful operation of such a system requires a high level of automation of the widely distributed sensors. Computer control systems provide the basis for operating the shot diagnostics with repeatable accuracy, assisted by operators who oversee system activities and setup, respond to performance exceptions, and complete calibration and maintenance tasks.