Tactile Sensing Skill Learning And Robotic Dexterous Manipulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Tactile Sensing Skill Learning And Robotic Dexterous Manipulation PDF full book. Access full book title Tactile Sensing Skill Learning And Robotic Dexterous Manipulation.

Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation
Author: Qiang Li
Publisher: Academic Press
Total Pages: 374
Release: 2022-04-02
Genre: Computers
ISBN: 0323904173

Download Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation Book in PDF, ePub and Kindle

Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects’ property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human’s dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches


Intrinsic Tactile Sensing System for Robotic Dexterous Manipulation

Intrinsic Tactile Sensing System for Robotic Dexterous Manipulation
Author: Andrés Felipe Ospina Triviño
Publisher:
Total Pages: 0
Release: 2017
Genre:
ISBN:

Download Intrinsic Tactile Sensing System for Robotic Dexterous Manipulation Book in PDF, ePub and Kindle

Tactile sensing and slip detection plays an important role in enabling robotic dexterous object manipulation. Thus developing a high-resolution fully integrated tactile sensor system is of great interest. This work deals the design and implementation of an intrinsic tactile sensing system based on a set of 3-axis force MEMs sensors and the detection of slippage with such system. In order to create a tactile system the 3-axis force sensors are protected by a coating, a study about the coating is made. Two different intrinsic systems based on an array of 3-axis force sensors are developed, the first one is used a feasibility test of this kind of system. The second intrinsic system is adapted to a robotic finger with soft surface. The proposed systems measures three-force components, the normal torque to the contact surface, and the position of the contact centroid applied to its sensitive surface. Both systems are characterized and tested. The detection of slippage with an intrinsic tactile system is tested. The application of the limit surface theory and the viscoelastic model of contact make the detection of slippage.


Reactive Manipulation with Contact Models and Tactile Feedback

Reactive Manipulation with Contact Models and Tactile Feedback
Author: Francois R. Hogan
Publisher:
Total Pages: 120
Release: 2020
Genre:
ISBN:

Download Reactive Manipulation with Contact Models and Tactile Feedback Book in PDF, ePub and Kindle

This thesis focuses on closing the loop in robotic manipulation, moving towards robots that can better perceive their environment and react to unforeseen situations. Humans effectively process and react to information from visual and tactile sensing, however robots often remain programmed in an open-loop fashion, and struggle to correct their motion based on detected errors. We begin our work by developing full-state feedback controllers for dynamical systems involving frictional contact interactions. Hybridness and underactuation are key characteristics of these systems that complicate the design of feedback controllers. We design and experimentally validate the controllers on a planar manipulation system where the purpose is to control the motion of a sliding object on a flat surface using a point robotic pusher. The pusher-slider is a simple dynamical system that retains many of the challenges that are typical of robotic manipulation tasks. We extend this work to partially observable systems, by developing closed-loop tactile controllers for dexterous manipulation with dual-arm robotic palms. We introduce Tactile Dexterity, an approach to dexterous manipulation that plans for robot/object interactions that render interpretable tactile information for control. Key to this formulation is the decomposition of manipulation plans into sequences of manipulation primitives with simple mechanics and efficient planners.


In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands

In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands
Author: Martin Pfanne
Publisher: Springer Nature
Total Pages: 213
Release: 2022-08-31
Genre: Technology & Engineering
ISBN: 3031069676

Download In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands Book in PDF, ePub and Kindle

This book introduces a novel model-based dexterous manipulation framework, which, thanks to its precision and versatility, significantly advances the capabilities of robotic hands compared to the previous state of the art. This is achieved by combining a novel grasp state estimation algorithm, the first to integrate information from tactile sensing, proprioception and vision, with an impedance-based in-hand object controller, which enables leading manipulation capabilities, including finger gaiting. The developed concept is implemented on one of the most advanced robotic manipulators, the DLR humanoid robot David, and evaluated in a range of challenging real-world manipulation scenarios and tasks. This book greatly benefits researchers in the field of robotics that study robotic hands and dexterous manipulation topics, as well as developers and engineers working on industrial automation applications involving grippers and robotic manipulators.


Robot Tactile Sensing

Robot Tactile Sensing
Author: R. Andrew Russell
Publisher:
Total Pages: 192
Release: 1990
Genre: Computers
ISBN:

Download Robot Tactile Sensing Book in PDF, ePub and Kindle

This work introduces tactile sensing for those engaged in advanced, sensor-based robotics, with special reference to problems of addressing arrays of sensor elements. It describes tactile sensors to register contact, surface profile, thermal properties and other tactile sensing modes. The use of robot manipulators to provide mobility for tactile sensors, and techniques for applying tactile sensing in robotic manipulation and recognition tasks are also covered. The various applications of this technology are discussed, and robot hands and grips are detailed.


Data-driven Robotic Manipulation of Deformable Objects Using Tactile Feedback

Data-driven Robotic Manipulation of Deformable Objects Using Tactile Feedback
Author: Yi Zheng
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Data-driven Robotic Manipulation of Deformable Objects Using Tactile Feedback Book in PDF, ePub and Kindle

Perceiving and manipulating deformable objects with the sense of touch are essential skills in everyday life. However, it remains difficult for robots to autonomously manipulate deformable objects using tactile sensing because of numerous perception, modeling, planning, and control challenges. We believe this is partially due to two fundamental challenges: (1) Establishing a physics-based model describing physical interactions between deformable tactile sensors and deformable objects is difficult; (2) Modern tactile sensors provide high-dimensional data, which is beneficial for perception but impedes the development of practical planning and control strategies. To address these challenges, we developed systematic frameworks for the tactile-driven manipulation of deformable objects that integrates state-of-the-art tactile sensing with well-established tools used by other robotics communities. In Study \#1, we showed how a robot can learn to manipulate a deformable, thin-shell object via tactile sensor feedback using model-free reinforcement learning methods. A page flipping task was learned on a real robot using a two-stage approach. First, we learned nominal page flipping trajectories by constructing a reward function that quantifies functional task performance from the perspective of tactile sensing. Second, we learned adapted trajectories using tactile-driven perceptual coupling, with an intuitive assumption that, while the functional page flipping trajectories for different task contexts (page sizes) might differ, similar tactile sensing feedback should be expected. In Study \#2, we showed how a robot can use tactile sensor feedback to control the pose and tension of a deformable linear object (elastic cable). For a cable manipulation task, low-dimensional latent space features were extracted from high-dimensional raw tactile sensor data using unsupervised learning methods, and a dynamics model was constructed in the latent space using supervised learning methods. The dynamics model was integrated with an optimization-based, model predictive controller for end-to-end, tactile-driven motion planning and control on a real robot. In summary, we developed frameworks for the tactile-driven manipulation of deformable objects that either circumvents sensor modeling difficulties or constructs a dynamics model directly from tactile feedback and uses the model for planning and control. This work provides a foundation for the further development of systematic frameworks that can address complex, tactile-driven manipulation problems.


Human Inspired Dexterity in Robotic Manipulation

Human Inspired Dexterity in Robotic Manipulation
Author: Tetsuyou Watanabe
Publisher: Academic Press
Total Pages: 218
Release: 2018-06-26
Genre: Technology & Engineering
ISBN: 0128133961

Download Human Inspired Dexterity in Robotic Manipulation Book in PDF, ePub and Kindle

Human Inspired Dexterity in Robotic Manipulation provides up-to-date research and information on how to imitate humans and realize robotic manipulation. Approaches from both software and hardware viewpoints are shown, with sections discussing, and highlighting, case studies that demonstrate how human manipulation techniques or skills can be transferred to robotic manipulation. From the hardware viewpoint, the book discusses important human hand structures that are key for robotic hand design and how they should be embedded for dexterous manipulation. This book is ideal for the research communities in robotics, mechatronics and automation. Investigates current research direction in robotic manipulation Shows how human manipulation techniques and skills can be transferred to robotic manipulation Identifies key human hand structures for robotic hand design and how they should be embedded in the robotic hand for dexterous manipulation


Advanced Tactile Sensing for Robotics

Advanced Tactile Sensing for Robotics
Author: Howard R. Nicholls
Publisher: World Scientific Publishing Company Incorporated
Total Pages: 294
Release: 1992-01-01
Genre: Technology & Engineering
ISBN: 9789810208707

Download Advanced Tactile Sensing for Robotics Book in PDF, ePub and Kindle


Robotic Tactile Perception and Understanding

Robotic Tactile Perception and Understanding
Author: Huaping Liu
Publisher: Springer
Total Pages: 220
Release: 2018-03-20
Genre: Computers
ISBN: 9811061718

Download Robotic Tactile Perception and Understanding Book in PDF, ePub and Kindle

This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques. Further, a set of structured sparse coding models is developed to address the issues of dynamic tactile sensing. The book then proves that the proposed framework is effective in solving the problems of multi-finger tactile object recognition, multi-label tactile adjective recognition and multi-category material analysis, which are all challenging practical problems in the fields of robotics and automation. The proposed sparse coding model can be used to tackle the challenging visual-tactile fusion recognition problem, and the book develops a series of efficient optimization algorithms to implement the model. It is suitable as a reference book for graduate students with a basic knowledge of machine learning as well as professional researchers interested in robotic tactile perception and understanding, and machine learning.


Tactile Sensors for Robotic Applications

Tactile Sensors for Robotic Applications
Author: Salvatore Pirozzi
Publisher: MDPI
Total Pages: 248
Release: 2021-03-17
Genre: Technology & Engineering
ISBN: 3036504249

Download Tactile Sensors for Robotic Applications Book in PDF, ePub and Kindle

The book covers different aspects: - Innovative technologies for tactile sensors development - Tactile data interpretation for control purposes - Alternative sensing technologies - Multi-sensor systems for grasping and manipulation - Sensing solutions for impaired people