Synthesis Morphologies And Applications Of Polyoxometalate Containing Diblock Copolymers PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis Morphologies And Applications Of Polyoxometalate Containing Diblock Copolymers PDF full book. Access full book title Synthesis Morphologies And Applications Of Polyoxometalate Containing Diblock Copolymers.

Synthesis, Morphologies and Applications of Polyoxometalate-containing Diblock Copolymers

Synthesis, Morphologies and Applications of Polyoxometalate-containing Diblock Copolymers
Author: Sanjiban Chakraborty
Publisher:
Total Pages: 297
Release: 2011
Genre: Block copolymers
ISBN:

Download Synthesis, Morphologies and Applications of Polyoxometalate-containing Diblock Copolymers Book in PDF, ePub and Kindle

Block copolymers by virtue of their ability to self assemble and microphaseseparation due to the contrast in chemical and physical properties of the covalently linked blocks constitute the essential building blocks towards various nano or micro sized architectures. Polyoxometalates (POM), on the other hand, being an interesting class of metal-oxygen nanometer-sized anionic clusters, are regarded highly due to their excellent electron accepting capability. Combining POM clusters with diblock copolymers can lead to a fascinating class of hybrid materials where the POM cluster not only affect the selfassembly process of various diblock copolymers but also brings its unique electronic properties into the hybrid system. Herein we report the detailed synthesis and characterizations of two hybrid coil-coil diblock copolymers along with two hybrid rodcoil diblock copolymers through polymerization-hybridization approach. The coil-coil diblocks were synthesized via atom transfer radial polymerization (ATRP) of styryl-type monomers and 4-vinylpyridine in sequence. For rod-coil diblock copolymers, the coil block was synthesized through ATRP, followed by the conversion of the terminal bromide to an azide. Ethynyl terminated poly (p-phenylenevinylene) (PPV) and poly (3-hexylthiophene) (P3HT) were prepared separately as the rod blocks. The rod block and the coil block were connected through click chemistry to yield rod-coil diblock copolymers. After removing the phthalimide protecting groups to regenerate aryl amines, POM clusters were finally linked to the coil block of all diblock copolymers to yield the targeted hybrid diblock copolymers. The covalent cluster attachment was confirmed by UV-Vis spectroscopy, FTIR and cyclovoltammetry measurements. The structures, solution and film optical properties, self-assembled morphologies and solar cell performances of these hybrids have been studied. It has been found that solar cell devices based on hybrid P3HT exhibited rather poor performances. Fluorescence dynamic studies indicate that the photoinduced electron transfer process from the rod block to pendant POMs is quite inefficient which may account for the poor device performance. Though the self-assembly process of these hybrid diblock copolymers and the preliminary morphologies has been demonstrated, detailed and systematic study of morphological control requires further extensive research.


Semiconducting Polymer Composites

Semiconducting Polymer Composites
Author: Xiaoniu Yang
Publisher: John Wiley & Sons
Total Pages: 553
Release: 2012-10-05
Genre: Technology & Engineering
ISBN: 3527648704

Download Semiconducting Polymer Composites Book in PDF, ePub and Kindle

The first part of Semiconducting Polymer Composites describes the principles and concepts of semiconducting polymer composites in general, addressing electrical conductivity, energy alignment at interfaces, morphology, energy transfer, percolation theory and processing techniques. In later chapters, different types of polymer composites are discussed: mixtures of semiconducting and insulating or semiconducting and semiconducting components, respectively. These composites are suitable for a variety of applications that are presented in detail, including transistors and solar cells, sensors and detectors, diodes and lasers as well as anti-corrosive and anti-static surface coatings.


Synthesis and Characterization of Ionically Bonded Diblock Copolymers

Synthesis and Characterization of Ionically Bonded Diblock Copolymers
Author: Lei Feng (Chemical engineer)
Publisher:
Total Pages: 0
Release: 2013
Genre: Diblock copolymers
ISBN:

Download Synthesis and Characterization of Ionically Bonded Diblock Copolymers Book in PDF, ePub and Kindle

Block copolymers consist of two or more incompatible polymer chains linked by covalent bonds. These block copolymer can separate into nanometer sized domains whose morphology depends upon the size of the block and interactions between them. The properties of block copolymers can be modified and potentially improved by introducing noncovalent interactions to replace covalent linkages between blocks to form supramolecular block copolymers. These kinds of materials combine the microphase separation inherent to block copolymers with the facile synthesis of supramolecular materials thereby affording new and unique materials. This dissertation focuses on synthesis and characterization of PS-b-PMA block copolymers with ion-pair junctions.Firstly, the chain-end sulfonated polystyrene ([omega]-sulfonated PS) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and postpolymerization modification. In the postpolymerization modification two methods were investigated: in the first one, the polymer was converted to a thiol-terminated polymer by aminolysis. Then a sulfonic acid end-group was produced then by oxidation of the thiol end-group with m-chloroperoxybenzoicacid (m-CPBA); in the second method, the RAFT-polymerized polymer was directly sulfonated by oxidation with m-CPBA. After purification by column chromatography, [omega]-sulfonated PS was obtained by both methods with greater than 95% end-group functionality as measured by titration. The sulfonic acid end-group could be neutralized with various ammonium or imidazolium counter ions through acid-base or ionic metathesis reactions. These polymers with ionic end-group can be used as model supramolecular building blocks.Secondly, ammonium end functionalized polymethylacrylate (PMA) was synthesized directly by RAFT polymerization using functional RAFT agent. Then chain-end sulfonated polystyrene and ammonium end functionalized polymethylacrylate (PMA) were used to synthesize A-B block copolymers by two different methods: the first method was by mixing two oppositely charged end group functionalized polymers; the second method was to ionically bond a RAFT agent to the chain end of an end sulfonated polymer to generate a supramolecular macro RAFT agent then an A-B block copolymer was prepared by RAFT polymerization using supramolecular macro-RAFT agent. The polymerization kinetics were investigated and the molecular weight and the chemical structure of the block copolymers were characterized by 1H-NMR and SEC. The results show that the ion-bonded supramolecular block copolymer, PS-PMA, have been successfully prepared with controlled molecular weight and narrow distribution.Thirdly, the morphology of the ion-bonded supramolecular PS-PMA diblock copolymers were investigated by small-angle X-ray scattering (SAXS) and rheological techniques. Several covalently bonded PS-PMA block copolymers were synthesized by RAFT polymerization and their micro domain structures and rheology behaviors were also investigated. The results showed that the electrostatic interactions between the end ion groups are able to overcome the thermodynamic repulsion of two blocks result in the formation of diblock copolymers with similar behaviors and morphology of traditional covalent bonded diblock copolymers and their micro domain structures remain to high temperatures.


Synthesis, Self-assembly and Applications of Amorphous Polyferrocenylsilane Block Copolymers

Synthesis, Self-assembly and Applications of Amorphous Polyferrocenylsilane Block Copolymers
Author: David Allen Rider
Publisher:
Total Pages: 598
Release: 2007
Genre:
ISBN: 9780494527382

Download Synthesis, Self-assembly and Applications of Amorphous Polyferrocenylsilane Block Copolymers Book in PDF, ePub and Kindle

A series of well-defined polystyrene-block-poly(ferrocenylethylmethylsilane) (PS-b-PFEMS) diblock copolymers was synthesized. Both PFEMS and PS- b-PFEMS were shown to be amorphous due to the atactic nature of the PFEMS. As a result, PS- b-PFEMS readily undergo solid-state self-assembly in the bulk producing a spectrum of ordered nanometer sized iron-rich morphologies. When cylinder-forming PS-b-PFEMSs were studied in thin films, well-ordered arrays of hexagonally packed iron-rich cylindrical microdomains oriented either parallel to or normal to the substrate were produced. The orientation was found to depend strongly on the film thickness and/or the conditions of annealing. The etching of these films using (i) reactive plasmas, and (ii) an oxidative chemical wet etch technique were investigated. Using (i), surface-patterned magnetic ceramics were produced as well as a nanotextured silver metal film. The latter was found to dramatically enhance the Raman spectroscopy of an adsorbed analyte molecule. Using (ii), nanoporous polystyrene films were generated by the quantitative elimination of PFEMS domains by exposure to a nucleophilic non-solvent under oxidizing conditions.Thin films of PS-b-PFEMS generated efficient iron nanoparticle catalysts for single-walled carbon nanotube (SWNT) growth via a chemical vapor deposition growth process. The kinetics of the formation of iron catalysts from PS- b-PFEMS and PFEMS were compared. Despite the lower iron content for PS-b -PFEMS films, more active iron sites were produced. Additionally, the tube diameter and density were tunable by adjusting the chain lengths of polyferrocenylsilane- block-polysiloxanes in thin films. Lastly, high-throughput field-effect SWNT transistors have been fabricated with more than 160 individually addressable devices on a chip.The influence of strong 3D confinement on the self-assembly of PS-b-PFEMS was studied. Both silica colloidal crystals and silica inverse colloidal crystals were used for directing the self-assembly. Unusual morphologies, such as concentric shells and branched lamellae, resulted from the interaction of the lamellar-forming PS-b-PFEMS with the high surface area templates. In addition, the control of the 3D confined morphology of cylinder-forming PS-b-PFEMS was demonstrated through mediation of the interfacial interactions within the colloidal crystal.For solution state self-assembly, PS-b -PFEMSs and polystyrene-block-poly(ferrocenylmethylphenylsilanes) (PS-b-PFEMSs) were stoichiometrically oxidized in solution. Due to a redox-induced polarity change for the PFEMS and PFMPS blocks, self-assembly into well-defined spherical micelles occurred. The micelles, composed of a core of partially oxidized PFS segments and a corona of PS, disassembled when treated with a reducing agent and regenerated unassociated free chains.Lastly, the photochemical treatment of metal-containing ferrocenophane monomers with low energy Pyrex-filtered light from a mercury lamp (lambda > 310 nm) or bright sunlight in the presence of an anionic initiator led to living polymerizations in which the conversion and molecular weight of the resulting polymer was controlled by irradiation time. The polymerization proceeded via attack of the initiator or propagating anion on the iron atom of the photoexcited monomer. The formation of functional block copolymer architectures was possible when the light is alternately switched on and off in between the sequential addition of different monomers.


DNA Block Copolymers

DNA Block Copolymers
Author: Fikri E. Alemdaroglu
Publisher:
Total Pages: 0
Release: 2007
Genre:
ISBN:

Download DNA Block Copolymers Book in PDF, ePub and Kindle


Trends in Polyoxometalates Research

Trends in Polyoxometalates Research
Author: Laurent Ruhlmann
Publisher: Nova Science Publishers
Total Pages: 0
Release: 2015
Genre: Metallic oxides
ISBN: 9781634826563

Download Trends in Polyoxometalates Research Book in PDF, ePub and Kindle

The book attempts to make available the recent developments in polyoxometalate (POM) synthesis. The focus centralises on the functionalisation of POMs with covalently organic moiety (for instance, the use of exogenous ligands such as carboxylate or bisphosphonate). It also delves into the development of lanthanide POMs, or the formation of blackberry-like assemblies. Likewise, the properties (redox properties, magnetism, etc...), and its applications (homogeneous and heterogeneous catalysis, photocatalysis, photoelectrocatalysis and photovoltaic cell development, etc.) are also analysed. This application concerns also the catalysis of H2O oxidation, photodegradation of pollutants, and reduction of cationic metal to form original nanoparticles. The use of polyoxometalates as catalysts for biologically relevant reactions is also considered. One of the other aims of the book is to highlight some recent developments and perspectives in the domain of materials and their applications. For instance, the use of POM-organic photosensitiser hybrids can also be achieved for application in the generation of photocurrent and the development of new types of solar cells. By combining POMs with electrically active materials, a variety of applications have been explored and several examples of POM-based electronic materials are presented in this book.


Synchrotron Radiation Applications

Synchrotron Radiation Applications
Author: Xinyi Zhang
Publisher: World Scientific
Total Pages: 669
Release: 2018-03-20
Genre: Science
ISBN: 9813227680

Download Synchrotron Radiation Applications Book in PDF, ePub and Kindle

This is a research-level review volume. It presents both the fundamentals and the advanced research results, covering most part of important aspects of synchrotron radiation applications. Among the broad subjects of synchrotron radiation applications, as the main content of this book we have applications in VUV, soft X-rays, hard X-rays and XFEL (X-ray free electron laser) and important applications by various synchrotron-based techniques and methods, such as ARPES (angle-resolved photoemission spectroscopy), VUV photo-ionization spectroscopy, X-ray absorption/emission spectroscopy and X-ray absorption fine structure, X-ray diffraction, small angle X-ray scattering, X-ray excited optical luminescence, imaging and high pressure techniques.