Synthesis And Reactions Of Palladium And Platinum Complexes Of The Type Mfpr33 X And M2oh2pr34 X2 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis And Reactions Of Palladium And Platinum Complexes Of The Type Mfpr33 X And M2oh2pr34 X2 PDF full book. Access full book title Synthesis And Reactions Of Palladium And Platinum Complexes Of The Type Mfpr33 X And M2oh2pr34 X2.

Higher Oxidation State Organopalladium and Platinum Chemistry

Higher Oxidation State Organopalladium and Platinum Chemistry
Author: Allan J. Canty
Publisher: Springer
Total Pages: 195
Release: 2011-02-25
Genre: Science
ISBN: 3642174299

Download Higher Oxidation State Organopalladium and Platinum Chemistry Book in PDF, ePub and Kindle

Kyle A. Grice, Margaret L. Scheuermann and Karen I. Goldberg: Five-Coordinate Platinum(IV) Complexes.- Jay A. Labinger and John E. Bercaw: The Role of Higher Oxidation State Species in Platinum-Mediated C-H Bond Activation and Functionalization.- Joy M. Racowski and Melanie S. Sanford: Carbon-Heteroatom Bond-Forming Reductive Elimination from Palladium(IV) Complexes.- Helena C. Malinakova: Palladium(IV) Complexes as Intermediates in Catalytic and Stoichiometric Cascade Sequences Providing Complex Carbocycles and Heterocycles.- Allan J. Canty and Manab Sharma: h1-Alkynyl Chemistry for the Higher Oxidation States of Palladium and Platinum.- David C. Powers and Tobias Ritter: Palladium(III) in Synthesis and Catalysis.- Marc-Etienne Moret: Organometallic Platinum(II) and Palladium(II) Complexes as Donor Ligands for Lewis-Acidic d10 and s2 Centers.


Investigations of the Reactivity of Palladium and Platinum Complexes with Molecular Oxygen and Characterization of a Gold(III)-alkene Complex

Investigations of the Reactivity of Palladium and Platinum Complexes with Molecular Oxygen and Characterization of a Gold(III)-alkene Complex
Author: Margaret Louise Scheuermann
Publisher:
Total Pages: 119
Release: 2013
Genre: Gold compounds
ISBN:

Download Investigations of the Reactivity of Palladium and Platinum Complexes with Molecular Oxygen and Characterization of a Gold(III)-alkene Complex Book in PDF, ePub and Kindle

Understanding the reactivity of metal complexes with molecular oxygen will facilitate the development of catalysts that can enable the widespread use of molecular oxygen as an oxidant for organic synthesis. This thesis presents two new classes of reactions between metal complexes and molecular oxygen. Neutral five-coordinate Pt complexes were tested for reactivity in the presence of molecular oxygen. In arene solution, the complexes (t̳B̳u̳̳M̳e̳2̳ nacnac)PtMe3 (1, t̳̳B̳u̳M̳e̳2̳ nacnac- = [((4-tBu-2,6-Me2C6H2)NC(CH3))2CH]-), (M̳e̳3̳ Me-nacnac)PtMe3 (2, M̳e̳3̳ Me-nacnac- = [((2,4,6-Me3C6H2)NC(CH3))2CCH3]-), and (t̳B̳u̳2̳ PyPyr)PtMe3 (3, t̳B̳u̳2̳ PyPyr- = 3,5-di-tert-butyl-2-(2-pyridyl)pyrrolide) reacted immediately with oxygen to form peroxo species in which two oxygen atoms bridge between the metal center and a carbon atom in the ligand backbone. In contrast, no reaction between ( i̳P̳r̳2̳ AnIm)PtMe3 (4a, i̳P̳r̳2̳ AnIm− = [o- C66H4-{N(C6H3 i Pr2)}(CH=NC6H3 i Pr2)]−) or (M̳e̳3̳ AnIm)PtMe3 (4b, M̳e̳̳3̳ AnIm− = [o-C6H4- {N(C6H2Me3)}(CH=NC6H2Me3)]−) and oxygen was observed. As activation of oxygen by five- coordinate PtIV species was found to involve cooperation between the metal center and the ligand, the ability of the ligand to participate in the oxygen binding appears to be a vital component. Oxygen atom transfer reactions of the novel peroxo species are also presented. In a separate study, an unusual reaction involving the activation of both molecular oxygen and a C-H bond at the same metal center was investigated. Pd(P(Ar)(tBu)2)2 (15, Ar = naphthyl) was found to react with molecular oxygen at room temperature in arene solvent to form a hydroxide dimer in which one equivalent of phosphine per Pd was lost and the remaining phosphine was cyclometalated through the naphthyl ring. At low temperature, two intermediates were observed. The nature of these intermediates suggests a mechanism involving initial reaction of Pd(P(Ar) (tBu)2)2 with O2 followed by the C-H activation step. In a final chapter unrelated to oxygen reactivity, the generation and characterization of a gold III̳-alkene complex by NMR and X-ray crystallography is presented. Such species have been proposed as intermediates in catalytic reactions but until recently none had been observed.


Solid-Phase Organic Syntheses, Volume 2

Solid-Phase Organic Syntheses, Volume 2
Author: Peter J. H. Scott
Publisher: John Wiley & Sons
Total Pages: 194
Release: 2012-07-02
Genre: Science
ISBN: 1118336704

Download Solid-Phase Organic Syntheses, Volume 2 Book in PDF, ePub and Kindle

Integrates solid-phase organic synthesis with palladium chemistry The Wiley Series on Solid-Phase Organic Syntheses keeps researchers current with major accomplishments in solid-phase organic synthesis, providing full experimental details. Following the validated, tested, and proven experimental procedures, readers can easily perform a broad range of complex syntheses needed for their own experiments and industrial applications. The series is conveniently organized into themed volumes according to the specific type of synthesis. This second volume in the series focuses on palladium chemistry in solid-phase synthesis, exploring palladium catalysts and reactions, procedures for preparation and utilization, ligands, and linker reactions. The first part of the volume offers a comprehensive overview of the field. Next, the chapters are organized into three parts: Part Two: Palladium-Mediated Solid-Phase Organic Syntheses Part Three: Immobilized Catalysts and Ligands Part Four: Palladium-Mediated Multifunctional Cleavage Each chapter is written by one or more leading international experts in palladium chemistry. Their contributions reflect a thorough examination and review of the current literature as well as their own first-hand laboratory experience. References at the end of each chapter serve as a gateway to the field's literature. The introduction of palladium-mediated, cross-coupling reactions more than thirty years ago revolutionized the science of carbon-carbon bond formation. It has now become a cornerstone of today's synthetic organic chemistry laboratory. With this volume, researchers in organic and medicinal chemistry have access to a single resource that explains the fundamentals of palladium chemistry in solid-phase synthesis and sets forth clear, step-by-step instructions for conducting their own syntheses.


Metal Complexes

Metal Complexes
Author: Peter Maitlis
Publisher: Elsevier
Total Pages: 336
Release: 2012-12-02
Genre: Science
ISBN: 0323155324

Download Metal Complexes Book in PDF, ePub and Kindle

The Organic Chemistry of Palladium, Volume 1: Metal Complexes deals with the number of organic reactions that can be catalyzed by palladium, particularly as regards the structures bonding, and reactions of the metal complexes. The book discusses monodentate ligands which are either neutral (carbonyls, isonitriles, carbenes) or anionic (methyl, phenyl, ethynyl, hydride). The text also examines the complexes formed by 1,3-. 1,4-, and 1,5-diolefins where four carbon atoms are bound to the metal. Palladium (II) can undergo a reaction with the 1,3-dienes and results in a ?-allylic complexes where only three carbon atoms are coordinated to the metal. (The bonding situation in complexes 1,4- and 1,5-dienes, where no great interaction between the olefins are similar to that in monoolefin complexes, is straightforward), Olefins can also react with palladium chloride in protic solvents to produce ketones (or aldehydes) or organic coupling products. Some experiments conducted by Huttel et al shows that some palladium was precipitated from the reactions giving lower yields, resulting in various aldehydes and ketones as by products. The book also discusses cyclopentadienyl and benzene complexes. The text can prove beneficial for researchers, investigators and scientists whose works involve organic chemistry, analytical chemistry, physical chemistry and inorganic chemistry.