Synthesis And Characterization Of Core Shell Structured Magnetic Nanomaterials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis And Characterization Of Core Shell Structured Magnetic Nanomaterials PDF full book. Access full book title Synthesis And Characterization Of Core Shell Structured Magnetic Nanomaterials.

Synthesis and Characterization of Iron Based Nanoparticles for Novel Applications

Synthesis and Characterization of Iron Based Nanoparticles for Novel Applications
Author: Hafsa Khurshid
Publisher:
Total Pages:
Release: 2011
Genre: Biomedical materials
ISBN: 9781124965673

Download Synthesis and Characterization of Iron Based Nanoparticles for Novel Applications Book in PDF, ePub and Kindle

The work in this thesis has been focused on the fabrication and characterization of iron based nanoparticles with controlled size and morphology with the aim: (i) to investigate their properties for potential applications in MICR toners and biomedical field and (ii) to study finite size effects on the magnetic properties of the nanoparticles. For the biomedical applications, core/shell structured iron/iron-oxide and hollow shell nanoparticles were synthesized by thermal decomposition of iron organometallic compounds [Fe(CO) 5] at high temperature. Core/shell structured iron/iron-oxide nanoparticles have been prepared in the presence of oleic acid and oleylamine. Particle size and composition was controlled by varying the reaction parameters during synthesis. The as-made particles are hydrophobic and not dispersible in water. Water dispersibility was achieved by ligand exchange a with double hydrophilic diblock copolymer. Relaxometery measurements of the transverse relaxation time T 2 of the nanoparticles solution at 3 Tesla confirm that the core/shell nanoparticles are an excellent MRI contrast agent using T 2 weighted imaging sequences. In comparison to conventionally used iron oxide nanoparticles, iron/iron-oxide core/shell nanoparticles offer four times stronger T 2 shortening effect at comparable core size due to their higher magnetization. The magnetic properties were studied as a function of particle size, composition and morphology. Hollow nanostructures are composed of randomly oriented grains arranged together to make a shell layer and make an interesting class of materials. The hollow morphology can be used as an extra degree of freedom to control the magnetic properties. Owing to their hollow morphology, they can be used for the targeted drug delivery applications by filling the drug inside their cavity. For the magnetic toners applications, particles were synthesized by chemically reducing iron salt using sodium borohydride and then coated with polyethylene glycol. Parameters such as the reactant concentrations and their flow rate were varied to study the effect of particle size, structure and crystallinity on the magnetic nanoparticles. Many different hydrophilic surfactants and polymers electrolytes were investigated for the particles' stability in water. PSSNa was found to be the best coating agent among all the other investigated polymer and surfactants for particles stability in water. Particles have an average size of 50 nm and magnetization above 150 emu/g. It is anticipated that owing to their high saturation magnetization and magneto crystalline anisotropy, the incorporations of PSSNa coated nanoparticles into the MICR toner can reduce the pigment loading and hence optimize the toner quality. The magnetic properties were studied as a function of particle size, composition and morphology. The saturation magnetization and coercivity was found to be strongly dependent on the particle size and morphology. The estimated effective anisotropy of the particles was found to be much higher than their bulk values because of their morphology and finite size effects. Core/shell particles below an average size of 12 nm display superparamagnetism and exchange bias phenomenon. The hollow morphology can be used as an extra degree of freedom to control magnetic properties. The enormously large number of pinned spins at the inner and outer surface and at the interface between the grain boundaries in hollow nanoparticles, gives rise to a very large value of effective anisotropy in these nanoparticles and measured hyteresis loops are minor loops. The surface spin disorder contribution to magnetic behavior is strongly influenced by the cooling field magnitude.


Nanomaterials

Nanomaterials
Author: A. K. Haghi
Publisher: CRC Press
Total Pages: 298
Release: 2013-03-11
Genre: Technology & Engineering
ISBN: 1926895193

Download Nanomaterials Book in PDF, ePub and Kindle

Intended as a reference for basic and practical knowledge about the synthesis, characterization, and applications of nanotechnology for students, engineers, and researchers, this book focuses on the production of different types of nanomaterials and their applications, particularly synthesis of different types of nanomaterials, characterization of different types of nanomaterials, applications of different types of nanomaterials, including the nanocomposites.


Complex Magnetic Nanostructures

Complex Magnetic Nanostructures
Author: Surender Kumar Sharma
Publisher: Springer
Total Pages: 468
Release: 2017-04-04
Genre: Technology & Engineering
ISBN: 3319520873

Download Complex Magnetic Nanostructures Book in PDF, ePub and Kindle

This book offers a detailed discussion of the complex magnetic behavior of magnetic nanosystems, with its myriad of geometries (e.g. core-shell, heterodimer and dumbbell) and its different applications. It provides a broad overview of the numerous current studies concerned with magnetic nanoparticles, presenting key examples and an in-depth examination of the cutting-edge developments in this field. This contributed volume shares the latest developments in nanomagnetism with a wide audience: from upper undergraduate and graduate students to advanced specialists in both academia and industry. The first three chapters serve as a primer to the more advanced content found later in the book, making it an ideal introductory text for researchers starting in this field. It provides a forum for the critical evaluation of many aspects of complex nanomagnetism that are at the forefront of nanoscience today. It also presents highlights from the extensive literature on the topic, including the latest research in this field.


Magnetic Characterization Techniques for Nanomaterials

Magnetic Characterization Techniques for Nanomaterials
Author: Challa S.S.R. Kumar
Publisher: Springer
Total Pages: 568
Release: 2017-04-24
Genre: Technology & Engineering
ISBN: 3662527804

Download Magnetic Characterization Techniques for Nanomaterials Book in PDF, ePub and Kindle

Sixth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Magnetic Characterization Techniques for Nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.


Magnetic Nanomaterials

Magnetic Nanomaterials
Author: Yanglong Hou
Publisher: John Wiley & Sons
Total Pages: 598
Release: 2017-10-23
Genre: Science
ISBN: 352734134X

Download Magnetic Nanomaterials Book in PDF, ePub and Kindle

Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave-absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.


Synthesis and Characterization of Ferromagnetic Nanoparticles

Synthesis and Characterization of Ferromagnetic Nanoparticles
Author: Kazuaki Yano
Publisher: ProQuest
Total Pages:
Release: 2007
Genre: Materials science
ISBN: 9780549319962

Download Synthesis and Characterization of Ferromagnetic Nanoparticles Book in PDF, ePub and Kindle

Ferromagnetic nanoparticles and their bimagnetic nanoparticles with uniform size distribution have drawn great attention in the past decades because of their unique magnetic properties and potential applications in high density recording media, exchange-spring permanent magnets and biotechnology. In this thesis, synthesis and characterization of ferromagnetic nanoparticles (FePt, Sm-Co system) and bimagnetic nanoparticles (FePt/Fe3O4, FePt/Au) are reported. FePt nanoparticles with different sizes and compositions were successfully synthesized via chemical synthesis. FePt particle size was tuned to a range of from 3 nm to 8 nm with 1 nm accuracy by changing the surfactant to Pt precursor ratio. By optimizing the amount of Fe3O4 phase in exchange-coupled FePt/Fe3O4 nanoparticles, the highest (BH) max of 17.6 MGOe was achieved in 6 nm FePt/Fe3O 4 particles after proper annealing, which is 35% higher than 13 MGOe for single-phase isotropic FePt nanoparticles. As-synthesized FePt particles with average size of 8 nm were annealed using Rapid Thermal Annealing (RTA) treatment with various temperatures and time. It was found that FePt nanoparticles can be transferred from disordered A1 phase to ordered L10 phase in several seconds at above 600°C, which is much shorter than the time needed for furnace annealing. The transmission electronic microscopy (TEM) and X-ray diffraction studies revealed that the average particle size of RTA treated FePt nanoparticles is smaller than that of the furnace annealed particles and no excessive particle sintering and agglomeration were observed in the RTA treated particles. FePt/Au core/shell nanoparticles have been successfully synthesized using seed mediated chemistry. The high resolution TEM (HRTEM) with Selected Area Electron Diffraction (SAED) and Nano-Beam Diffraction (NBD) analyses confirmed the core/shell structure of FePt/Au nanoparticles. The VU-Vis measurement revealed that FePt/Au core/shell nanoparticles show a red shift of surface plasmon absorption band compared to pure Au nanoparticles. The FePt/Au core/shell nanoparticles showed ferromagnetism after annealing at optimum temperature. Moreover, the water soluble FePt/Au core/shell nanoparticles were achieved by ligands exchange. Sm-Co particles were prepared via surfactants-assisted ball milling and separated into slurries and nanoparticles by size selection process. As-milled particles were then annealed by different types of annealing techniques to improve the magnetic properties. XRD studies revealed that after forming gas and hydrothermal annealing the Sm-Co particles were oxidized and decomposed into Sm2O3 and magnetically soft phase (FeCo, Co), resulting in the decrease of coercivity. Coercivity of Sm2Co 17 slurries increased by vacuum annealing when the ball milling time is less than 5 h. Highest Hc of 7.5 kOe was achieved in 1 h ball-milled particles, which is 35% higher than the coercivity of non-annealed particles. For the nanoparticles, it was difficult to increase or even maintain the magnetic properties after annealing because of high oxidation affinity of nanoparticles.


Synthesis and Characterization of Metal-carbon Core-shell Nanoparticles

Synthesis and Characterization of Metal-carbon Core-shell Nanoparticles
Author: He Li
Publisher:
Total Pages: 138
Release: 2008
Genre: Nanostructured materials
ISBN: 9780549490159

Download Synthesis and Characterization of Metal-carbon Core-shell Nanoparticles Book in PDF, ePub and Kindle

Fe, Co, FexCo(1-x) and AuxFe (1-x) alloy nanoparticles encapsulated by graphitic carbon are synthesized by chemical vapor deposition. Transmission electron microscopy (TEM) reveals that the nanoparticles are mostly about 10 nm in diameter and each nanoparticle is enclosed by at least one layer of graphitic carbon. Phase identification by high resolution TEM indicates the metallic phases were indeed obtained and preserved, even after three years of exposure to ambient conditions. The Fe-containing nanoparticles were found to be either BCC or FCC or Fe 3C, the Co nanoparticles being FCC, the FexCo(1-x) (0.1


Nanoalloys

Nanoalloys
Author: Damien Alloyeau
Publisher: Springer Science & Business Media
Total Pages: 415
Release: 2012-07-13
Genre: Technology & Engineering
ISBN: 1447140141

Download Nanoalloys Book in PDF, ePub and Kindle

Bimetallic nanoparticles, also called nanoalloys, are at the heart of nanoscience because of their ability to tune together composition and size for specific purposes. By approaching both their physical and chemical properties, Nanoalloys: Synthesis, Structure & Properties provides a comprehensive reference to this research field in nanoscience by addressing the subject from both experimental and theoretical points of view, providing chapters across three main topics: Growth and structural properties Thermodynamics and electronic structure of nanoalloys Magnetic, optic and catalytic properties The growth and elaboration processes which are the necessary and crucial part of any experimental approach are detailed in the first chapter. Three chapters are focused on the widely used characterization techniques sensitive to both the structural arrangements and chemistry of nanoalloys. The electronic structure of nanoalloys is described as a guide of useful concepts and theoretical tools. Chapters covering thermodynamics begin with bulk alloys, going to nanoalloys via surfaces in order to describe chemical order/disorder, segregation and phase transitions in reduced dimension. Finally, the optical, magnetic and catalytic properties are discussed by focusing on nanoparticles formed with one element to track the modifications which occur when forming nanoalloys. The range and detail of Nanoalloys: Synthesis, Structure & Properties makes it an ideal resource for postgraduates and researchers working in the field of nanoscience looking to expand and support their knowledge of nanoalloys.