Surface Organometallic Chemistry Molecular Approachestosurface Catalysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Surface Organometallic Chemistry Molecular Approachestosurface Catalysis PDF full book. Access full book title Surface Organometallic Chemistry Molecular Approachestosurface Catalysis.

Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis

Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis
Author: Jean-Marie Basset
Publisher: Springer Science & Business Media
Total Pages: 340
Release: 2012-12-06
Genre: Science
ISBN: 9400929714

Download Surface Organometallic Chemistry: Molecular Approaches to Surface Catalysis Book in PDF, ePub and Kindle

Surface organometallic chemistry is a new field bringing together researchers from organometallic, inorganic, and surface chemistry and catalysis. Topics ranging from reaction mechanisms to catalyst preparation are considered from a molecular basis, according to which the "active site" on a catalyst surface has a supra-molecular character. This. the first book on the subject, is the outcome of a NATO Workshop held in Le Rouret. France, in May. 1986. It is our hope that the following chapters and the concluding summary of recommendations for research may help to provide a definition of surface organometallic chemistry. Besides catalysis. the central theme of the Workshop, four main topics are considered: 1) Reactions of organometallics with surfaces of metal oxides, metals. and zeolites; 2) Molecular models of surfaces, metal oxides, and metals; 3) Molecular approaches to the mechanisms of surface reactions; 4) Synthesis and modification of zeolites and related microporous solids. Most surface organometallic chemistry has been carried out on amorphous high-surf ace-area metal oxides such as silica. alumina. magnesia, and titania. The first chapter. contributed by KNOZINGER. gives a short summary of the structure and reactivity of metal oxide surfaces. Most of our understanding of these surfaces is based on acid base and redox chemistry; this chemistry has developed from X-ray and spectroscopic data, and much has been inferred from the structures and reactivities of adsorbed organic probe molecules. There are major opportunities for extending this understanding by use of well-defined (single crystal) oxide surfaces and organometallic probe molecules.


Modern Surface Organometallic Chemistry

Modern Surface Organometallic Chemistry
Author: Jean-Marie Basset
Publisher: John Wiley & Sons
Total Pages: 725
Release: 2009-07-10
Genre: Science
ISBN: 3527627103

Download Modern Surface Organometallic Chemistry Book in PDF, ePub and Kindle

Covering everything from the basics to recent applications, this monograph represents an advanced overview of the field. Edited by internationally acclaimed experts respected throughout the community, the book is clearly divided into sections on fundamental and applied surface organometallic chemistry. Backed by numerous examples from the recent literature, this is a key reference for all chemists.


Aspects of Homogeneous Catalysis

Aspects of Homogeneous Catalysis
Author: R. Ugo
Publisher: Springer Science & Business Media
Total Pages: 122
Release: 2012-12-06
Genre: Science
ISBN: 9400921136

Download Aspects of Homogeneous Catalysis Book in PDF, ePub and Kindle

The literature contains tens of thousands of publications and patents devoted to the synthesis, characterization and processing of polymers. Despite the fact that there are more than one hundred elements, the majority of these publications and patents concern polymers with carbon backbones. Furthermore, the limited (by comparison) number of publications on polymers that contain elements other than carbon in their backbones are typically devoted to polymers based on silicon, especially those with Si-O bonds. This disparity is partially a consequence of the dearth of low cost organometallic feedstock chemicals potentially useful for polymer synthesis. It also derives from the lack of general synthetic techniques for the preparation of organometallic polymers. That is, by comparison with the numerous synthetic strategies available for the preparation of organic polymers, there are few such strategies available for synthesizing tractable, organometallic polymers. In recent years, commerical and military performance requirements have begun to challenge the performance limits of organic polymers. As such, researchers have turned to organometallic polymers as a possible means of exceeding these limits for a wide range of applications that include: (1) microelectronics processing (e.g. photoresists) [1]; (2) light weight batteries (conductors and semi-conductors) [2]; (3) non-linear optical devices [3] and, (4) high temperature structural materials (e.g. ceramic fiber processing) [4,5].


Oxide Surfaces

Oxide Surfaces
Author:
Publisher: Elsevier
Total Pages: 677
Release: 2001-05-21
Genre: Science
ISBN: 0080538312

Download Oxide Surfaces Book in PDF, ePub and Kindle

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.


Cluster Models for Surface and Bulk Phenomena

Cluster Models for Surface and Bulk Phenomena
Author: Gianfranco Pacchioni
Publisher: Springer Science & Business Media
Total Pages: 683
Release: 2013-03-08
Genre: Science
ISBN: 1468460218

Download Cluster Models for Surface and Bulk Phenomena Book in PDF, ePub and Kindle

It is widely recognized that an understanding of the physical and chemical properties of clusters will give a great deal of important information relevant to surface and bulk properties of condensed matter. This relevance of clusters for condensed matter is one of the major motivations for the study of atomic and molecular clusters. The changes of properties with cluster size, from small clusters containing only a few atoms to large clusters containing tens of thousands of atoms, provides a unique way to understand and to control the development of bulk properties as separated units are brought together to form an extended system. Another important use of clusters is as theoretical models of surfaces and bulk materials. The electronic wavefunctions for these cluster models have special advantages for understanding, in particular, the local properties of condensed matter. The cluster wavefunctions, obtained with molecular orbital theory, make it possible to relate chemical concepts developed to describe chemical bonds in molecules to the very closely related chemical bonding at the surface and in the bulk of condensed matter. The applications of clusters to phenomena in condensed matter is a cross-disciplinary activity which requires the interaction and collaboration of researchers in traditionally separate areas. For example, it is necessary to bring together workers whose background and expertise is molecular chemistry with those whose background is solid state physics. It is also necessary to bring together experimentalists and theoreticians.


Heterogeneous Catalysis in Organic Chemistry

Heterogeneous Catalysis in Organic Chemistry
Author: Gerard V. Smith
Publisher: Academic Press
Total Pages: 363
Release: 1999-06-30
Genre: Science
ISBN: 008052480X

Download Heterogeneous Catalysis in Organic Chemistry Book in PDF, ePub and Kindle

The features of this book which will be of special interest to academic organic chemists are the introduction (Chapter 1), which presents a short course on the concepts and language of heterogeneous catalysis, covers organic reaction mechanisms of hydrogenation (Chapter 2), hydrogenolysis (Chapter 4), and oxidation (Chapter 6), a presents problems and solutions specific for running heterogeneous catalytic organic reactions in solution. These materials can supplement advanced chemistry courses. Most synthetic organic chemists use a variety of "protecting groups" which they attach to functional groups (reactive groups of atoms) while some reaction is being conducted on another part of the molecule. These protecting groups prevent reactions of the functional groups during other reactions and are removed later by a heterogeneous catalytic method called hydrogenolysis. One unique feature of this book, not found in other books on catalysis, is an exhaustive chapter (Chapter 4) on hydrogenolysis, which is dredged from the recent synthetic literature published by modern organic chemists. Academic organic chemists should find this chapter extremely useful and may wish to adopt the book as a supplement for advanced organic chemistry courses designed for seniors and for graduate students. It will also be useful for professors and their research groups engaged in synthetic organic chemistry. Many academic organic chemists are not aware of recent advances in heterogeneous enantioselective catalysis (Chapter 3) or in selective low temperature, liquid phase heterogeneous catalytic oxidations by hydrogen peroxide (Chapter 6). These specialty topics are timely and may be new to academic organic chemists and can be used to supplement their advanced courses. Several features of this book will also be of special interest to industrial chemists who are unfamiliar with heterogeneous catalysis. Many good organic chemists are hire by industry. They synthesize a new compound using standard organic synthetic techniques but are informed by their supervisor that they must convert some of their synthetic steps into heterogeneous catalytic steps. They may not have been exposed to heterogeneous catalysis and have few places to turn. This book offers them a crash course in heterogeneous catalysis as well as many examples of reactions and conditions with which they can start their search. Those industrial organic chemists already familiar with heterogeneous catalysis will find this book useful as a reference to many examples in the recent literature. They will find recent surface science discoveries correlated with heterogeneous catalysis or organic reactions and mechanistic suggestions designed to stimulate innovative nontraditional thinking about organic reactions on surfaces. Written by organic chemists for organic chemists Introduces heterogeneous catalysis concepts and language Presents a comprehensive compilation of protecting group removal procedures Covers liquid-phase hydrogenations, hydrogenolysis, and oxidations Addresses heterogeneous methods for producing pure enantiomers of chiral products Examines the emerging field of heterogenized homogeneous catalysts Mixes practical applications with mechanistic interpretations