Study Of Process Effects And Bias Stress Stability On Amorphous Indium Gallium Zinc Oxide Thin Film Transistor PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Study Of Process Effects And Bias Stress Stability On Amorphous Indium Gallium Zinc Oxide Thin Film Transistor PDF full book. Access full book title Study Of Process Effects And Bias Stress Stability On Amorphous Indium Gallium Zinc Oxide Thin Film Transistor.

Amorphous Oxide Semiconductors

Amorphous Oxide Semiconductors
Author: Hideo Hosono
Publisher: John Wiley & Sons
Total Pages: 644
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 1119715571

Download Amorphous Oxide Semiconductors Book in PDF, ePub and Kindle

AMORPHOUS OXIDE SEMICONDUCTORS A singular resource on amorphous oxide semiconductors edited by a world-recognized pioneer in the field In Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, the Editors deliver a comprehensive account of the current status of—and latest developments in—transparent oxide semiconductor technology. With contributions from leading international researchers and exponents in the field, this edited volume covers physical fundamentals, thin-film transistor applications, processing, circuits and device simulation, display and memory applications, and new materials relevant to amorphous oxide semiconductors. The book makes extensive use of structural diagrams of materials, energy level and energy band diagrams, device structure illustrations, and graphs of device transfer characteristics, photographs and micrographs to help illustrate the concepts discussed within. It also includes: A thorough introduction to amorphous oxide semiconductors, including discussions of commercial demand, common challenges faced during their manufacture, and materials design Comprehensive explorations of the electronic structure of amorphous oxide semiconductors, structural randomness, doping limits, and defects Practical discussions of amorphous oxide semiconductor processing, including oxide materials and interfaces for application and solution-process metal oxide semiconductors for flexible electronics In-depth examinations of thin film transistors (TFTs), including the trade-off relationship between mobility and reliability in oxide TFTs Perfect for practicing scientists, engineers, and device technologists working with transparent semiconductor systems, Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory will also earn a place in the libraries of students studying oxides and other non-classical and innovative semiconductor devices. WILEY SID Series in Display Technology Series Editor: Ian Sage, Abelian Services, Malvern, UK The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.


On the Reversible Effects of Bias-stress Applied to Amorphous Indium-gallium-zinc-oxide Thin Film Transistors

On the Reversible Effects of Bias-stress Applied to Amorphous Indium-gallium-zinc-oxide Thin Film Transistors
Author: Anish Suresh Bharadwaj
Publisher:
Total Pages: 52
Release: 2018
Genre: Thin film transistors
ISBN:

Download On the Reversible Effects of Bias-stress Applied to Amorphous Indium-gallium-zinc-oxide Thin Film Transistors Book in PDF, ePub and Kindle

"The role of amorphous IGZO (Indium Gallium Zinc Oxide) in Thin Film Transistors (TFT) has found its application in emerging display technologies such as active matrix liquid crystal display (LCD) and active matrix organic light-emitting diode (AMOLED) due to factors such as high mobility 10-20 cm2/(V.s), low subthreshold swing (~120mV/dec), overall material stability and ease of fabrication. However, prolonged application of gate bias on the TFT results in deterioration of I-V characteristics such as sub-threshold distortion and a distinct shift in threshold voltage. Both positive-bias and negative-bias affects have been investigated. In most cases positive-stress was found to have negligible influence on device characteristics, however a stress induced trap state was evident in certain cases. Negative stress demonstrated a pronounced influence by donor like interface traps, with significant transfer characteristics shift that was reversible over a period of time at room temperature. It was also found that the reversible mechanism to pre-stress conditions was accelerated when samples were subjected to cryogenic temperature (77 K). To improve device performance BG devices were subjected to extended anneals and encapsulated with ALD alumina. These devices were found to have excellent resistance to bias stress. Double gate devices that were subjected to extended anneals and alumina capping revealed similar results with better electrostatics compared to BG devices. The cause and effect of bias stress and its reversible mechanisms on IGZO TFTs has been studied and explained with supporting models."--Abstract.


Thin Film Transistors 10 (TFT 10)

Thin Film Transistors 10 (TFT 10)
Author: Y. Kuo
Publisher: The Electrochemical Society
Total Pages: 443
Release: 2010-10
Genre: Science
ISBN: 1566778247

Download Thin Film Transistors 10 (TFT 10) Book in PDF, ePub and Kindle

This special issue of ECS Transactions is for the 20th anniversary of the Thin Film Transistor (TFT) symposium series. Renowned TFT experts in related materials, processes, devices, and applications from the world serve as invited speakers to review the technology and science progress in the past two decades. Selected contributed papers are also included in this issue.


Post Processing Treatment of InGaZnO Thin Film Transistors for Improved Bias-illumination Stress Reliability

Post Processing Treatment of InGaZnO Thin Film Transistors for Improved Bias-illumination Stress Reliability
Author: Muhammad Ruhul Hasin
Publisher:
Total Pages: 65
Release: 2013
Genre: Indium gallium zinc oxide
ISBN:

Download Post Processing Treatment of InGaZnO Thin Film Transistors for Improved Bias-illumination Stress Reliability Book in PDF, ePub and Kindle

This thesis work mainly examined the stability and reliability issues of amorphous Indium Gallium Zinc Oxide (a-IGZO) thin film transistors under bias-illumination stress. Amorphous hydrogenated silicon has been the dominating material used in thin film transistors as a channel layer. However with the advent of modern high performance display technologies, it is required to have devices with better current carrying capability and better reproducibility. This brings the idea of new material for channel layer of these devices. Researchers have tried poly silicon materials, organic materials and amorphous mixed oxide materials as a replacement to conventional amorphous silicon layer. Due to its low price and easy manufacturing process, amorphous mixed oxide thin film transistors have become a viable option to replace the conventional ones in order to achieve high performance display circuits. But with new materials emerging, comes the challenge of reliability and stability issues associated with it. Performance measurement under bias stress and bias-illumination stress have been reported previously. This work proposes novel post processing low temperature long time annealing in optimum ambient in order to annihilate or reduce the defects and vacancies associated with amorphous material which lead to the instability or even the failure of the devices. Thin film transistors of a-IGZO has been tested for standalone illumination stress and bias-illumination stress before and after annealing. HP 4155B semiconductor parameter analyzer has been used to stress the devices and measure the output characteristics and transfer characteristics of the devices. Extra attention has been given about the effect of forming gas annealing on a-IGZO thin film. a-IGZO thin film deposited on silicon substrate has been tested for resistivity, mobility and carrier concentration before and after annealing in various ambient. Elastic Recoil Detection has been performed on the films to measure the amount of hydrogen atoms present in the film. Moreover, the circuit parameters of the thin film transistors has been extracted to verify the physical phenomenon responsible for the instability and failure of the devices. Parameters like channel resistance, carrier mobility, power factor has been extracted and variation of these parameters has been observed before and after the stress.


Thin Film Transistors 12 (TFT 12)

Thin Film Transistors 12 (TFT 12)
Author: Y. Kuo
Publisher: The Electrochemical Society
Total Pages: 204
Release: 2014
Genre:
ISBN: 1607685477

Download Thin Film Transistors 12 (TFT 12) Book in PDF, ePub and Kindle


Transparent Oxide Electronics

Transparent Oxide Electronics
Author: Pedro Barquinha
Publisher: John Wiley & Sons
Total Pages: 348
Release: 2012-04-09
Genre: Technology & Engineering
ISBN: 0470683732

Download Transparent Oxide Electronics Book in PDF, ePub and Kindle

Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at low-cost, disposable and lightweight devices for the next generation of ergonomic and functional discrete devices. Chapters cover: Properties and applications of n-type oxide semiconductors P-type conductors and semiconductors, including copper oxide and tin monoxide Low-temperature processed dielectrics n and p-type thin film transistors (TFTs) – structure, physics and brief history Paper electronics – Paper transistors, paper memories and paper batteries Applications of oxide TFTs – transparent circuits, active matrices for displays and biosensors Written by a team of renowned world experts, Transparent Oxide Electronics: From Materials to Devices gives an overview of the world of transparent electronics, and showcases groundbreaking work on paper transistors


Composition Engineering for Solution-Processed Gallium-Rich Indium-Gallium-Zinc-Oxide Thin Film Transistors

Composition Engineering for Solution-Processed Gallium-Rich Indium-Gallium-Zinc-Oxide Thin Film Transistors
Author: Isaac Caleb Wang
Publisher:
Total Pages: 60
Release: 2018
Genre:
ISBN:

Download Composition Engineering for Solution-Processed Gallium-Rich Indium-Gallium-Zinc-Oxide Thin Film Transistors Book in PDF, ePub and Kindle

Metal oxides have risen to prominence in recent years as a promising active layer for thin film transistors (TFTs). One of the main reasons for this has been its value in display technology. Conventionally, displays have relied on amorphous hydrogenated silicon (a-Si:H) TFTs but the demand for large area displays with high resolution, fast response time, low power consumption and compatibility with integrated driving circuits have prompted research into other semiconducting materials. As a result, metal oxides have become major prospects to replace a-Si:H with their high-performance electrical characteristics and simplicity of processing, making them valuable switching elements in display technology. Particularly, quaternary metal oxides such as the amorphous Indium-Gallium-Zinc-Oxide (IGZO) have demonstrated extremely high performances as TFTs, prompting extensive research in the field. The conventional method of producing metal oxide thin films has been through vacuum deposition methods such as sputtering. However, for large area applications these vacuum deposition methods face inherent limitations which prevent easy application and device fabrication. Facing these restrictions, solution-processing has become a popularly researched alternative in producing metal oxide thin films due to their simple processing requirements, low cost, and ability to be applied over large areas. In solution-processed IGZO, there have been a couple approaches to improve device performance and stability as well as simplify processing. In this work, we produce a gallium-rich 2:2:1 IGZO TFT using solution processes and study its electrical characteristics and stability. In this paper, we demonstrate a working solution-processed gallium-rich 2:2:1 IGZO TFT and compare it to a solution-processed indium-rich device to quantify its stability and performance. Through this work, we show that solution-processing is a viable fabrication method for gallium-rich IGZO, which can be a high-stability alternative to other compositions of IGZO devices.