Structural Studies Of Complex Oxides PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Structural Studies Of Complex Oxides PDF full book. Access full book title Structural Studies Of Complex Oxides.

Complex Oxides: An Introduction

Complex Oxides: An Introduction
Author: Buttrey Douglas J
Publisher: World Scientific
Total Pages: 240
Release: 2019-03-20
Genre: Science
ISBN: 9813278595

Download Complex Oxides: An Introduction Book in PDF, ePub and Kindle

This book provides a unique look at the chemistry and properties of complex metal oxides from the perspectives of some of the most active researchers on this class of materials. Applications of complex oxide materials are highly varied. Topics reviewed in this volume include solid-state battery research, the chemistry of transparent conductors, ternary uranium oxides, magnetic perovskites, non-linear optical materials, complex molybdenum-vanadium bronzes and other complex materials used in selective oxidation catalysis. It is written to serve as an introduction to the subject for and those beginning to work on these materials, particularly new graduate students.


Metal Oxide-Based Thin Film Structures

Metal Oxide-Based Thin Film Structures
Author: Nini Pryds
Publisher: Elsevier
Total Pages: 562
Release: 2017-09-07
Genre: Technology & Engineering
ISBN: 0081017529

Download Metal Oxide-Based Thin Film Structures Book in PDF, ePub and Kindle

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike


Novel Complex Oxide Structures Using Deintercalation

Novel Complex Oxide Structures Using Deintercalation
Author: Kyu Ho Lee
Publisher:
Total Pages:
Release: 2022
Genre:
ISBN:

Download Novel Complex Oxide Structures Using Deintercalation Book in PDF, ePub and Kindle

The discovery of novel materials brings diverse scientific opportunities by introducing novel physical phenomena, opening ways to verify and formulate theories, and enabling revolutionary industrial applications. Stabilization of novel structures in complex oxide materials is in particular of strong interest, as these materials display a broad spectrum of physical and chemical properties, along with dramatic variations in the material properties upon subtle changes in their structures. The stabilization of a material is largely governed by thermodynamic variables such as temperature, pressure, and chemical potential. Hence, stabilizing a novel, unconventional material usually requires that one or more of these thermodynamic variables are maintained at values far from the standard conditions. Epitaxial thin film growth, in which the target material is artificially exposed to large effective pressure due to the forced geometrical match with an underlying substrate with different unit cell dimensions, is a well-established example that satisfies this criterion. Another relevant example is ion intercalation, where relatively small ions such as lithium are inserted into a material (usually a two-dimensional van der Waals material) by electrochemically tuning the chemical potential of the ions, thereby changing the material's physical and chemical properties. In this work, I will show that controlled ionic modification via deintercalation can be an effective approach to stabilize novel complex oxides and demonstrate this in two material systems. First, I will discuss the meta-stable formation of IrO$_{x}$ via deintercalation of strontium in SrIrO$_{3}$, which demonstrates high oxygen evolution reaction (OER) activity and good chemical stability in acid. This motivates design strategies for high-activity OER catalysts such as the stabilization of a novel columbite polymorph of IrO$_{2}$, which I demonstrate can be achieved via epitaxial thin film growth. Second, I will show that oxygen deintercalation of perovskite nickelate stabilizes infinite-layer \textit{Ln}NiO$_{2}$ (\textit{Ln} = lanthanide), which upon hole-doping hosts unconventional superconductivity and shows striking similarities in the superconducting phase diagram to that of the cuprates despite marked differences in the two systems. Overall, this work highlights deintercalation as a powerful technique to stabilize novel complex oxides that is widely applicable to various material systems. As this approach has been rather underutilized relative to other conventional methods, there is great potential to further discover novel materials using this technique.


Spectroscopy of Complex Oxide Interfaces

Spectroscopy of Complex Oxide Interfaces
Author: Claudia Cancellieri
Publisher: Springer
Total Pages: 326
Release: 2018-04-09
Genre: Technology & Engineering
ISBN: 3319749897

Download Spectroscopy of Complex Oxide Interfaces Book in PDF, ePub and Kindle

This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.


Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides
Author: Gertjan Koster
Publisher: Woodhead Publishing
Total Pages: 534
Release: 2022-04-22
Genre: Science
ISBN: 0081029462

Download Epitaxial Growth of Complex Metal Oxides Book in PDF, ePub and Kindle

Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites. Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications