Structural And Theoretical Studies Of Mixed Metal Oxides PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Structural And Theoretical Studies Of Mixed Metal Oxides PDF full book. Access full book title Structural And Theoretical Studies Of Mixed Metal Oxides.

Theoretical Studies of Metal Oxides with Spinel Structure

Theoretical Studies of Metal Oxides with Spinel Structure
Author: Henry P. Pinto
Publisher: LAP Lambert Academic Publishing
Total Pages: 128
Release: 2013
Genre:
ISBN: 9783659407048

Download Theoretical Studies of Metal Oxides with Spinel Structure Book in PDF, ePub and Kindle

This book presents the results of theoretical studies of the metal oxides -alumina ( -Al2O3) and magnetite (Fe3O4) using density-functional theory (DFT) including Hubbard-U corrections for the strongly correlated Fe-3d electrons of Fe3O4 (DFT+U). Although these compounds have the same spinel structure, they present different properties, e.g., -Al2O3 is a typical insulator with high dielectric constant while Fe3O4 is a typical magnetic material which undergoes a metal-insulator transition. Starting from the theoretical prediction of the -Al2O3 structure, we have studied the (111), (001), (110) and (150) surfaces. The adsorption and dissociation of H2O onto the (111) surface is considered and H-diffusion simulated. Finally, a model for the -Al2O3(111)/aluminium-hydroxide interface is proposed and studied. The Fe3O4 is a metal oxide that undergoes phase a transition at TV=120 K. Applying DFT+U, we investigated the electron-phonon effects that cause a small structural distortion and lead to the insulating state with low symmetry. The Fe3O4 (001) surfaces were studied. The computed electronic and atomic structures are discussed on the light of experimental data."


Catalysis

Catalysis
Author: JJ Spivey
Publisher: Royal Society of Chemistry
Total Pages: 256
Release: 2015-02-19
Genre: Science
ISBN: 1782620540

Download Catalysis Book in PDF, ePub and Kindle

Industrial and academic scientists face increasing challenges to find cost-effective and environmentally sound methods for converting natural resources into fuels, chemicals and energy. With over 7000 papers published in this field of catalysis each year, keeping up with the literature can be difficult. Catalysis Volume 27 presents critical and comprehensive reviews of the hottest literature published over the last twelve months. Covering major areas such as chemical transformations using two-dimensional hybrid nanocatalysts, conversion of biomass-derived syngas to fuels and catalytic oxidation of organic pollutants in aqueous solution using sulfate radicals, this book is a useful reference for anyone working in catalysis and an essential resource for any library.


Metal Oxides in Heterogeneous Catalysis

Metal Oxides in Heterogeneous Catalysis
Author: Jacques C. Vedrine
Publisher: Elsevier
Total Pages: 620
Release: 2018-01-11
Genre: Technology & Engineering
ISBN: 0128116323

Download Metal Oxides in Heterogeneous Catalysis Book in PDF, ePub and Kindle

Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis. Presents case studies in each chapter that provide a focus on the industrial applications Includes fundamentals, key theories and practical applications of metal oxide-based heterogeneous catalysis in one comprehensive resource Edited, and contributed, by leading experts who provide perspectives on synthesis, characterization and applications


Theoretical Studies of Structural and Electronic Properties in Transition Metal Oxides

Theoretical Studies of Structural and Electronic Properties in Transition Metal Oxides
Author: Tsezar F. Seman
Publisher:
Total Pages: 148
Release: 2013
Genre:
ISBN:

Download Theoretical Studies of Structural and Electronic Properties in Transition Metal Oxides Book in PDF, ePub and Kindle

The following studies are presented: theory of K-edge resonant inelastic x-ray scattering and its application for La0.5Sr1.5MnO4, effects of rare earth ion size on the stability of the coherent Jahn-Teller distortions in undoped perovskite manganites, and symmetry-mode-based classical and quantum mechanical formalism of lattice dynamics. The formula based on tight-binding approach for the calculation of K-edge resonant inelastic x-ray scattering (RIXS) spectrum for transition metal oxides is presented first, by extending the previous existing result to include explicit momentum dependence and a basis with multiple core-hole sites. This formula is applied to layered charge, orbital and spin ordered manganites, La0.5Sr1.5MnO4, and good agreement with experimental data was obtained, in particular, with regard to the large variation of the intensity with momentum. As a consequence, it is established that the electron screening in La0.5Sr1.5MnO4 is highly localized around the core hole site and demonstrates the potential of K-edge RIXS, as a probe for the screening dynamics in materials. Theoretical study is then introduced on the relation between the size of the rare earth ions, often known as chemical pressure, and the stability of the coherent Jahn-Teller distortions in undoped perovskite manganites. Using a Keating model expressed in terms of atomic scale symmetry modes, it is shown that there exists a coupling between the uniform shear distortion and the staggered buckling distortion within the Jahn-Teller energy term. It is found that this coupling provides a mechanism by which the coherent Jahn-Teller distortion is more stabilized by smaller rare earth ions. Further analysis shows the appearance of the uniform shear distortion below the Jahn-Teller ordering temperature; the Jahn-Teller ordering temperature is estimated and its variation between NdMnO3 and LaMnO3, and the relations between distortions are obtained. A good agreement is found between theoretical results and the experimental data. Finally, the classical and quantum mechanical descriptions of lattice dynamics are presented, from the atomic to the continuum scale, using atomic scale symmetry modes and their constraint equations. This approach is demonstrated for a one- dimensional chain and a two-dimensional square lattice on a monatomic basis. For the classical description, it is found that rigid modes, in addition to the distortional modes found before, are necessary to describe the kinetic energy. The long wavelength limit of the kinetic energy terms expressed in terms of atomic scale modes is shown to be consistent with the continuum theory, and leading order corrections are obtained. For the quantum mechanical description, conjugate momenta for the atomic scale symmetry modes are presented. In direct space, graphical rules for their commutation relations are obtained. Commutation relations in the reciprocal space are also calculated. As an example, phonon modes are analyzed in terms of symmetry modes. The approach presented here based on atomic scale symmetry modes could be useful for the study of complex emerging materials, in which competing structural phases and non-linearity of the lattice energy play an important role.


Advances in Metal Oxides and Their Composites for Emerging Applications

Advances in Metal Oxides and Their Composites for Emerging Applications
Author: Sagar D. Delekar
Publisher: Elsevier
Total Pages: 745
Release: 2022-08-26
Genre: Technology & Engineering
ISBN: 032385706X

Download Advances in Metal Oxides and Their Composites for Emerging Applications Book in PDF, ePub and Kindle

Advances in Metal Oxides and their Composites for Emerging Applications reviews key properties of metal-oxide based composites, including their structural, physicochemical, optical, electrical components and resulting performance in a wide range of diverse applications. Synthetic protocols used to create metal oxides with desirable morphologies, properties and performance for applications in solar energy harvesting, energy storage and environmental remediation are emphasized. Emerging technologies that address important global challenges such as energy shortage, the hazardous effects of non-renewable energy sources, unaffordable energy technologies, and the contaminants present in air and water are also covered. This book is an ideal resource for materials scientists and engineers working in academia and R&D. In addition, it's appropriate for those who either need an introduction to potential research directions or for experienced researchers and practitioners looking for a key reference on the latest advances. Introduces the fundamental properties of metal oxide-based composites, paying special attention to physicochemical, optical, electrical and structural characteristics Provides an overview of the synthetic protocols used to design and tune the properties of metal oxide-based composites for key emerging applications Discusses metal oxide-based composites and their use in energy applications such as energy storage, energy harvesting and environmental remediation


Oxide Surfaces

Oxide Surfaces
Author:
Publisher: Elsevier
Total Pages: 677
Release: 2001-05-21
Genre: Science
ISBN: 0080538312

Download Oxide Surfaces Book in PDF, ePub and Kindle

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.