Stochastic Model For Earthquake Ground Motion Using Wavelet Packets PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Model For Earthquake Ground Motion Using Wavelet Packets PDF full book. Access full book title Stochastic Model For Earthquake Ground Motion Using Wavelet Packets.

Stochastic Model for Earthquake Ground Motion Using Wavelet Packets

Stochastic Model for Earthquake Ground Motion Using Wavelet Packets
Author: Yoshifumi Yamamoto
Publisher: Stanford University
Total Pages: 329
Release: 2011
Genre:
ISBN:

Download Stochastic Model for Earthquake Ground Motion Using Wavelet Packets Book in PDF, ePub and Kindle

For performance-based design, nonlinear dynamic structural analysis for various types of input ground motions is required. Stochastic (simulated) ground motions are sometimes useful as input motions, because unlike recorded motions they are not limited in number and because their properties can be varied systematically to study the impact of ground motion properties on structural response. This dissertation describes an approach by which the wavelet packet transform can be used to characterize complex time-varying earthquake ground motions, and it illustrates the potential benefits of such an approach in a variety of earthquake engineering applications. The proposed model is based on Thr´ainsson and Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground motions and attenuation models to their model parameters. We extend their model using wavelet packet transform since it can control the time and frequency characteristic of time series. The time- and frequency-varying properties of real ground motions can be captured using wavelet packets, so a model is developed that requires only 13 parameters to describe a given ground motion. These 13 parameters are then related to seismological variables such as earthquake magnitude, distance, and site condition, through regression analysis that captures trends in mean values, standard deviations and correlations of these parameters observed in a large database of recorded strong ground motions. The resulting regression equations then form a model that can be used to predict ground motions for a future earthquake scenario; this model is analogous to widely used empirical ground motion prediction models (formerly called "attenuation models") except that this model predicts entire time series rather than only response spectra. The ground motions produced using this predictive model are explored in detail, and are shown to have elastic response spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both mean and variability to existing published predictive models for those properties. That consistency allows the proposed model to be used in place of existing models for probabilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA is termed "simulation-based probabilistic seismic hazard analysis" and it allows a deeper understanding of ground motion hazard and hazard deaggregation than is possible with traditional PSHA because it produces a suite of potential ground motion time histories rather than simply a distribution of response spectra. The potential benefits of this approach are demonstrated and explored in detail. Taking this analysis even further, this suite of time histories can be used as input for nonlinear dynamic analysis of structures, to perform a risk analysis (i.e., "probabilistic seismic demand analysis") that allows computation of the probability of the structure exceeding some level of response in a future earthquake. These risk calculations are often performed today using small sets of scaled recorded ground motions, but that approach requires a variety of assumptions regarding important properties of ground motions, the impacts of ground motion scaling, etc. The approach proposed here facilitates examination of those assumptions, and provides a variety of other relevant information not obtainable by that traditional approach.


Stochastic Model for Earthquake Ground Motion Using Wavelet Packets

Stochastic Model for Earthquake Ground Motion Using Wavelet Packets
Author: Yoshifumi Yamamoto
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Stochastic Model for Earthquake Ground Motion Using Wavelet Packets Book in PDF, ePub and Kindle

For performance-based design, nonlinear dynamic structural analysis for various types of input ground motions is required. Stochastic (simulated) ground motions are sometimes useful as input motions, because unlike recorded motions they are not limited in number and because their properties can be varied systematically to study the impact of ground motion properties on structural response. This dissertation describes an approach by which the wavelet packet transform can be used to characterize complex time-varying earthquake ground motions, and it illustrates the potential benefits of such an approach in a variety of earthquake engineering applications. The proposed model is based on Thráinsson and Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground motions and attenuation models to their model parameters. We extend their model using wavelet packet transform since it can control the time and frequency characteristic of time series. The time- and frequency-varying properties of real ground motions can be captured using wavelet packets, so a model is developed that requires only 13 parameters to describe a given ground motion. These 13 parameters are then related to seismological variables such as earthquake magnitude, distance, and site condition, through regression analysis that captures trends in mean values, standard deviations and correlations of these parameters observed in a large database of recorded strong ground motions. The resulting regression equations then form a model that can be used to predict ground motions for a future earthquake scenario; this model is analogous to widely used empirical ground motion prediction models (formerly called "attenuation models") except that this model predicts entire time series rather than only response spectra. The ground motions produced using this predictive model are explored in detail, and are shown to have elastic response spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both mean and variability to existing published predictive models for those properties. That consistency allows the proposed model to be used in place of existing models for probabilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA is termed "simulation-based probabilistic seismic hazard analysis" and it allows a deeper understanding of ground motion hazard and hazard deaggregation than is possible with traditional PSHA because it produces a suite of potential ground motion time histories rather than simply a distribution of response spectra. The potential benefits of this approach are demonstrated and explored in detail. Taking this analysis even further, this suite of time histories can be used as input for nonlinear dynamic analysis of structures, to perform a risk analysis (i.e., "probabilistic seismic demand analysis") that allows computation of the probability of the structure exceeding some level of response in a future earthquake. These risk calculations are often performed today using small sets of scaled recorded ground motions, but that approach requires a variety of assumptions regarding important properties of ground motions, the impacts of ground motion scaling, etc. The approach proposed here facilitates examination of those assumptions, and provides a variety of other relevant information not obtainable by that traditional approach.


Aging, Shaking, and Cracking of Infrastructures

Aging, Shaking, and Cracking of Infrastructures
Author: Victor E. Saouma
Publisher: Springer Nature
Total Pages: 1153
Release: 2021-04-13
Genre: Science
ISBN: 3030574342

Download Aging, Shaking, and Cracking of Infrastructures Book in PDF, ePub and Kindle

This self-contained book focuses on the safety assessment of existing structures subjected to multi-hazard scenarios through advanced numerical methods. Whereas the focus is on concrete dams and nuclear containment structures, the presented methodologies can also be applied to other large-scale ones. The authors explains how aging and shaking ultimately lead to cracking, and how these complexities are compounded by their random nature. Nonlinear (static and transient) finite element analysis is hence integrated with both earthquake engineering and probabilistic methods to ultimately derive capacity or fragility curves through a rigorous safety assessment. Expanding its focus beyond design aspects or the state of the practice (i.e., codes), this book is composed of seven sections: Fundamentals: theoretical coverage of solid mechnics, plasticity, fracture mechanics, creep, seismology, dynamic analysis, probability and statistics Damage: that can affect concrete structures, such as cracking of concrete, AAR, chloride ingress, and rebar corrosion, Finite Element: formulation for both linear and nonlinear analysis including stress, heat and fracture mechanics, Engineering Models: for soil/fluid-structure interaction, uncertainty quantification, probablilistic and random finite element analysis, machine learning, performance based earthquake engineering, ground motion intensity measures, seismic hazard analysis, capacity/fragility functions and damage indeces, Applications to dams through potential failure mode analyses, risk-informed decision making, deterministic and probabilistic examples, Applications to nuclear structures through modeling issues, aging management programs, critical review of some analyses, Other applications and case studies: massive RC structures and bridges, detailed assessment of a nuclear containment structure evaluation for license renewal. This book should inspire students, professionals and most importantly regulators to rigorously apply the most up to date scientific methods in the safety assessment of large concrete structures.


Statistical Methods for QTL Mapping

Statistical Methods for QTL Mapping
Author: Zehua Chen
Publisher: CRC Press
Total Pages: 944
Release: 2013-11-01
Genre: Mathematics
ISBN: 0415669863

Download Statistical Methods for QTL Mapping Book in PDF, ePub and Kindle

While numerous advanced statistical approaches have recently been developed for quantitative trait loci (QTL) mapping, the methods are scattered throughout the literature. Statistical Methods for QTL Mapping brings together many recent statistical techniques that address the data complexity of QTL mapping. After introducing basic genetics topics and statistical principles, the author discusses the principles of quantitative genetics, general statistical issues of QTL mapping, commonly used one-dimensional QTL mapping approaches, and multiple interval mapping methods. He then explains how to use a feature selection approach to tackle a QTL mapping problem with dense markers. The book also provides comprehensive coverage of Bayesian models and MCMC algorithms and describes methods for multi-trait QTL mapping and eQTL mapping, including meta-trait methods and multivariate sequential procedures. This book emphasizes the modern statistical methodology for QTL mapping as well as the statistical issues that arise during this process. It gives the necessary biological background for statisticians without training in genetics and, likewise, covers statistical thinking and principles for geneticists. Written primarily for geneticists and statisticians specializing in QTL mapping, the book can also be used as a supplement in graduate courses or for self-study by PhD students working on QTL mapping projects.


Applications of Statistics and Probability in Civil Engineering

Applications of Statistics and Probability in Civil Engineering
Author: Michael Faber
Publisher: CRC Press
Total Pages: 938
Release: 2011-07-15
Genre: Technology & Engineering
ISBN: 0203144791

Download Applications of Statistics and Probability in Civil Engineering Book in PDF, ePub and Kindle

Under the pressure of harsh environmental conditions and natural hazards, large parts of the world population are struggling to maintain their livelihoods. Population growth, increasing land utilization and shrinking natural resources have led to an increasing demand of improved efficiency of existing technologies and the development of new ones. A


Essentials of Applied Dynamic Analysis

Essentials of Applied Dynamic Analysis
Author: Junbo Jia
Publisher: Springer Science & Business Media
Total Pages: 431
Release: 2014-01-09
Genre: Technology & Engineering
ISBN: 3642370039

Download Essentials of Applied Dynamic Analysis Book in PDF, ePub and Kindle

This book presents up-to-date knowledge of dynamic analysis in engineering world. To facilitate the understanding of the topics by readers with various backgrounds, general principles are linked to their applications from different angles. Special interesting topics such as statistics of motions and loading, damping modeling and measurement, nonlinear dynamics, fatigue assessment, vibration and buckling under axial loading, structural health monitoring, human body vibrations, and vehicle-structure interactions etc., are also presented. The target readers include industry professionals in civil, marine and mechanical engineering, as well as researchers and students in this area.


Dramatic Effect of Cross-Correlations in Random Vibrations of Discrete Systems, Beams, Plates, and Shells

Dramatic Effect of Cross-Correlations in Random Vibrations of Discrete Systems, Beams, Plates, and Shells
Author: Isaac Elishakoff
Publisher: Springer Nature
Total Pages: 356
Release: 2020-04-11
Genre: Technology & Engineering
ISBN: 3030403947

Download Dramatic Effect of Cross-Correlations in Random Vibrations of Discrete Systems, Beams, Plates, and Shells Book in PDF, ePub and Kindle

This volume explains the dramatic effect of cross-correlations in forming the structural response of aircraft in turbulent excitation, ships in rough seas, cars on irregular roads, and other dynamic regimes. It brings into sharp focus the dramatic effect of cross correlations often neglected due to the analytical difficulty of their evaluation. Veteran author Professor Isaac Elishakoff illustrates how neglect of cross correlations could result in underestimation of the response by tens or hundreds of percentages the effect of the random vibrations of structures’ main elements, including beams, plates, and shells.


Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures
Author: George Deodatis
Publisher: CRC Press
Total Pages: 1112
Release: 2014-02-10
Genre: Technology & Engineering
ISBN: 1315884887

Download Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures Book in PDF, ePub and Kindle

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str