Statistical Mechanics Protein Structure And Protein Substrate Interactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statistical Mechanics Protein Structure And Protein Substrate Interactions PDF full book. Access full book title Statistical Mechanics Protein Structure And Protein Substrate Interactions.

Statistical Mechanics, Protein Structure, and Protein Substrate Interactions

Statistical Mechanics, Protein Structure, and Protein Substrate Interactions
Author: Sebastian Doniach
Publisher: Springer Science & Business Media
Total Pages: 400
Release: 2013-11-22
Genre: Science
ISBN: 1489913491

Download Statistical Mechanics, Protein Structure, and Protein Substrate Interactions Book in PDF, ePub and Kindle

A number of factors have come together in the last couple of decades to define the emerging interdisciplinary field of structural molecular biology. First, there has been the considerable growth in our ability to obtain atomic-resolution structural data for biological molecules in general, and proteins in particular. This is a result of advances in technique, both in x-ray crystallography, driven by the development of electronic detectors and of synchrotron radiation x-ray sources, and by the development ofNMR techniques which allow for inference of a three-dimensional structure of a protein in solution. Second, there has been the enormous development of techniques in DNA engineering which makes it possible to isolate and clone specific molecules of interest in sufficient quantities to enable structural measurements. In addition, the ability to mutate a given amino acid sequence at will has led to a new branch of biochemistry in which quantitative measurements can be made assessing the influence of a given amino acid on the function of a biological molecule. A third factor, resulting from the exponential increase in computing power available to researchers, has been the emergence of a growing body of people who can take the structural data and use it to build atomic-scale models of biomolecules in order to try and simulate their motions in an aqueous environment, thus helping to provide answers to one of the most basic questions of molecular biology: the relation of structure to function.


Protein Actions

Protein Actions
Author: Ken Dill
Publisher: Garland Science
Total Pages:
Release: 2017-09-19
Genre: Medical
ISBN: 1351815008

Download Protein Actions Book in PDF, ePub and Kindle

Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science.


Lectures on Statistical Physics and Protein Folding

Lectures on Statistical Physics and Protein Folding
Author: Kerson Huang
Publisher: World Scientific
Total Pages: 159
Release: 2005
Genre: Science
ISBN: 9812561439

Download Lectures on Statistical Physics and Protein Folding Book in PDF, ePub and Kindle

This book introduces an approach to protein folding from the point of view of kinetic theory. There is an abundance of data on protein folding, but few proposals are available on the mechanism driving the process. Here, presented for the first time, are suggestion on possible research directions, as developed by the author in collaboration with C. C. Lin. The first half of this invaluable book contains a concise but relatively complete review of relevant topics in statistical mechanics and kinetic theory. It includes standard topics such as thermodynamics, the Maxwell-Boltzmann distribution, and ensemble theory. Special discussions include the dynamics of phase transitions, and Brownian motion as an illustration of stochastic processes. The second half develops topics in molecular biology and protein structure, with a view to discovering mechanisms underlying protein folding. Attention is focused on the energy flow through the protein in its folded state. A mathematical model, based on the Brownian motion of coupled harmonic oscillators, is worked out in the appendix.


Protein Physics

Protein Physics
Author: Alexei V. Finkelstein
Publisher: Academic Press
Total Pages: 382
Release: 2002-05-14
Genre: Medical
ISBN: 9780122567810

Download Protein Physics Book in PDF, ePub and Kindle

"Covers the most general problems of protein structure, folding and function and introduces the concepts and theories. It deals with fibrous, membrane and especially water-soluble globular proteins, in both their native and denatured states. The book summarizes and presents in a systematic way the results of several decades of worldwide fundamental research on protein physics, structure and folding"--Back cover.


Computational Statistical Mechanics of Protein Function

Computational Statistical Mechanics of Protein Function
Author: Mauro Lorenzo Mugnai
Publisher:
Total Pages: 358
Release: 2014
Genre:
ISBN:

Download Computational Statistical Mechanics of Protein Function Book in PDF, ePub and Kindle

Molecular dynamics (MD) provides an atomically detailed description of the dynamics of a system of atoms. It is a useful tool to understand how protein function arises from the dynamics of the atoms of the protein and of its environment. When the MD model is accurate, analyzing a MD trajectory unveils features of the proteins that are not available from a single snapshot or a static structure. When the sampling of the accessible configurations is accurate, we can employ statistical mechanics (SM) to connect the trajectory generated by MD to experimentally measurable kinetic and thermodynamic quantities that are related to function. In this dissertation I describe three applications of MD and SM in the field of biochemistry. First, I discuss the theory of alchemical methods to compute free energy differences. In these methods a fragment of a system is computationally modified by removing its interactions with the environment and creating the interactions of the environment with the new species. This theory provides a numerical scheme to efficiently compute protein-ligand affinity, solvation free energies, and the effect of mutations on protein structure. I investigated the theory and stability of the numerical algorithm. The second research topic that I discuss considers a model of the dynamics of a set of coarse variables. The dynamics in coarse space is modeled by the Smoluchowski equation. To employ this description it is necessary to have the correct potential of mean force and diffusion tensor in the space of coarse variables. I describe a new method that I developed to extract the diffusion tensor from a MD simulation. Finally, I employed MD simulations to explain at a microscopic level the stereospecificity of the enzyme ketoreductase. To do so, I ran multiple simulations of the enzyme bound with the correct ligand and its enantiomer in a reactive configuration. The simulations showed that the enzyme retained the correct stereoisomer closer to the reactive configuration, and highlighted which interactions are responsible for the specificity. These weak physical interactions enhance binding with the correct ligand even prior to the steps of chemical modification.


Equilibria and Kinetics of Biological Macromolecules

Equilibria and Kinetics of Biological Macromolecules
Author: Prof. Jan Hermans
Publisher: John Wiley & Sons
Total Pages: 411
Release: 2013-10-22
Genre: Science
ISBN: 1118733770

Download Equilibria and Kinetics of Biological Macromolecules Book in PDF, ePub and Kindle

Progressively builds a deep understanding of macromolecular behavior Based on each of the authors' roughly forty years of biophysics research and teaching experience, this text instills readers with a deep understanding of the biophysics of macromolecules. It sets a solid foundation in the basics by beginning with core physical concepts such as thermodynamics, quantum chemical models, molecular structure and interactions, and water and the hydrophobic effect. Next, the book examines statistical mechanics, protein-ligand binding, and conformational stability. Finally, the authors address kinetics and equilibria, exploring underlying theory, protein folding, and stochastic models. With its strong emphasis on molecular interactions, Equilibria and Kinetics of Biological Macromolecules offers new insights and perspectives on proteins and other macromolecules. The text features coverage of: Basic theory, applications, and new research findings Related topics in thermodynamics, quantum mechanics, statistical mechanics, and molecular simulations Principles and applications of molecular simulations in a dedicated chapter and interspersed throughout the text Macromolecular binding equilibria from the perspective of statistical mechanics Stochastic processes related to macromolecules Suggested readings at the end of each chapter include original research papers, reviews and monographs, enabling readers to explore individual topics in greater depth. At the end of the text, ten appendices offer refreshers on mathematical treatments, including probability, computational methods, Poisson equations, and defining molecular boundaries. With its classroom-tested pedagogical approach, Equilibria and Kinetics of Biological Macromolecules is recommended as a graduate-level textbook for biophysics courses and as a reference for researchers who want to strengthen their understanding of macromolecular behavior.


Frontiers in Protein Structure, Function, and Dynamics

Frontiers in Protein Structure, Function, and Dynamics
Author: Dev Bukhsh Singh
Publisher: Springer Nature
Total Pages: 458
Release: 2020-07-02
Genre: Science
ISBN: 9811555303

Download Frontiers in Protein Structure, Function, and Dynamics Book in PDF, ePub and Kindle

This book discusses a broad range of basic and advanced topics in the field of protein structure, function, folding, flexibility, and dynamics. Starting with a basic introduction to protein purification, estimation, storage, and its effect on the protein structure, function, and dynamics, it also discusses various experimental and computational structure determination approaches; the importance of molecular interactions and water in protein stability, folding and dynamics; kinetic and thermodynamic parameters associated with protein-ligand binding; single molecule techniques and their applications in studying protein folding and aggregation; protein quality control; the role of amino acid sequence in protein aggregation; muscarinic acetylcholine receptors, antimuscarinic drugs, and their clinical significances. Further, the book explains the current understanding on the therapeutic importance of the enzyme dopamine beta hydroxylase; structural dynamics and motions in molecular motors; role of cathepsins in controlling degradation of extracellular matrix during disease states; and the important structure-function relationship of iron-binding proteins, ferritins. Overall, the book is an important guide and a comprehensive resource for understanding protein structure, function, dynamics, and interaction.


Introduction to Proteins

Introduction to Proteins
Author: Amit Kessel
Publisher: CRC Press
Total Pages: 1423
Release: 2018-03-22
Genre: Computers
ISBN: 1498747213

Download Introduction to Proteins Book in PDF, ePub and Kindle

Introduction to Proteins provides a comprehensive and state-of-the-art introduction to the structure, function, and motion of proteins for students, faculty, and researchers at all levels. The book covers proteins and enzymes across a wide range of contexts and applications, including medical disorders, drugs, toxins, chemical warfare, and animal behavior. Each chapter includes a Summary, Exercies, and References. New features in the thoroughly-updated second edition include: A brand-new chapter on enzymatic catalysis, describing enzyme biochemistry, classification, kinetics, thermodynamics, mechanisms, and applications in medicine and other industries. These are accompanied by multiple animations of biochemical reactions and mechanisms, accessible via embedded QR codes (which can be viewed by smartphones) An in-depth discussion of G-protein-coupled receptors (GPCRs) A wider-scale description of biochemical and biophysical methods for studying proteins, including fully accessible internet-based resources, such as databases and algorithms Animations of protein dynamics and conformational changes, accessible via embedded QR codes Additional features Extensive discussion of the energetics of protein folding, stability and interactions A comprehensive view of membrane proteins, with emphasis on structure-function relationship Coverage of intrinsically unstructured proteins, providing a complete, realistic view of the proteome and its underlying functions Exploration of industrial applications of protein engineering and rational drug design Each chapter includes a Summary, Exercies, and References Approximately 300 color images Downloadable solutions manual available at www.crcpress.com For more information, including all presentations, tables, animations, and exercises, as well as a complete teaching course on proteins' structure and function, please visit the author's website: http://ibis.tau.ac.il/wiki/nir_bental/index.php/Introduction_to_Proteins_Book. Praise for the first edition "This book captures, in a very accessible way, a growing body of literature on the structure, function and motion of proteins. This is a superb publication that would be very useful to undergraduates, graduate students, postdoctoral researchers, and instructors involved in structural biology or biophysics courses or in research on protein structure-function relationships." --David Sheehan, ChemBioChem, 2011 "Introduction to Proteins is an excellent, state-of-the-art choice for students, faculty, or researchers needing a monograph on protein structure. This is an immensely informative, thoroughly researched, up-to-date text, with broad coverage and remarkable depth. Introduction to Proteins would provide an excellent basis for an upper-level or graduate course on protein structure, and a valuable addition to the libraries of professionals interested in this centrally important field." --Eric Martz, Biochemistry and Molecular Biology Education, 2012