Stable Numerical Schemes For Fluids Structures And Their Interactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stable Numerical Schemes For Fluids Structures And Their Interactions PDF full book. Access full book title Stable Numerical Schemes For Fluids Structures And Their Interactions.

Stable Numerical Schemes for Fluids, Structures and their Interactions

Stable Numerical Schemes for Fluids, Structures and their Interactions
Author: Cornel Marius Murea
Publisher: Elsevier
Total Pages: 210
Release: 2017-09-01
Genre: Technology & Engineering
ISBN: 0081023804

Download Stable Numerical Schemes for Fluids, Structures and their Interactions Book in PDF, ePub and Kindle

This book presents numerical algorithms for solving incompressible fluids, elastic structures and fluid-structure interactions. It collects some of the fundamental finite element methods as well as new approaches.For Stokes and Navier-Stokes equations, the mixed finite element method is employed. An arbitrary Lagrangian Eulerian framework is used for fluids in a moving domain. Schemes for linear and St Venant-Kirchhoff non-linear dynamic elasticity are presented. For fluid-structure interaction, two schemes are analyzed: the first is fully implicit and the second is semi-implicit, where the fluid domain is computed explicitly and consequently the computational time is considerably reduced.The stability of the schemes is proven in this self-contained book. Every chapter is supplied with numerical tests for the reader. These are aimed at Masters students in Mathematics or Mechanical Engineering. Presents a self-contained monograph of schemes for fluid and elastic structures, including their interactions Provides a numerical analysis of schemes for Stokes and Navier-Stokes equations Covers dynamic linear and non-linear elasticity and fluid-structure interaction


Fluid-Structure Interaction

Fluid-Structure Interaction
Author: Henri J.-P. Morand
Publisher: Wiley
Total Pages: 220
Release: 1995-08-29
Genre: Technology & Engineering
ISBN: 9780471944591

Download Fluid-Structure Interaction Book in PDF, ePub and Kindle

The aim of this book is to describe the methods leading to mechanical and numerical modelling of the linear vibrations of elastic structures coupled with internal fluids (sloshing, hydroelasticity and structural acoustics). It is characteristic of the problems under consideration that they are multidisciplinary involving structural and fluid representation and related numerical aspects. The problems are solved by direct resolution of the coupled systems by finite element methods and modal reduction procedures using the eigenmodes of ?elementary subsystems?. The numerical methods described in this book have applications in various engineering disciplines such as the automotive and aerospace industries, civil engineering, nuclear engineering and bioengineering.


Fluid-structure Interaction

Fluid-structure Interaction
Author: Cedric Leblond
Publisher: John Wiley & Sons
Total Pages: 404
Release: 2022-11-30
Genre: Science
ISBN: 1394188218

Download Fluid-structure Interaction Book in PDF, ePub and Kindle

This book provides a comprehensive overview of the numerical simulation of fluid–structure interaction (FSI) for application in marine engineering. Fluid–Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid–structure interaction for designing and optimizing the ships of the future.


Numerical Simulation, An Art of Prediction 1

Numerical Simulation, An Art of Prediction 1
Author: Jean-François Sigrist
Publisher: John Wiley & Sons
Total Pages: 276
Release: 2020-04-14
Genre: Mathematics
ISBN: 1786304317

Download Numerical Simulation, An Art of Prediction 1 Book in PDF, ePub and Kindle

Numerical simulation is a technique of major importance in various technical and scientific fields. Used to understand diverse physical phenomena or to design everyday objects, it plays a major role in innovation in the industrial sector. Whilst engineering curricula now include training courses dedicated to it, numerical simulation is still not well-known in some economic sectors, and even less so among the general public. Simulation involves the mathematical modeling of the real world, coupled with the computing power offered by modern technology. Designed to perform virtual experiments, digital simulation can be considered as an "art of prediction". Embellished with a rich iconography and based on the testimony of researchers and engineers, this book shines a light on this little-known art. It is the first of two volumes and focuses on the principles, methods and industrial practice of numerical modeling.


Numerical Simulation, An Art of Prediction, Volume 2

Numerical Simulation, An Art of Prediction, Volume 2
Author: Jean-François Sigrist
Publisher: John Wiley & Sons
Total Pages: 374
Release: 2020-01-09
Genre: Mathematics
ISBN: 1119694698

Download Numerical Simulation, An Art of Prediction, Volume 2 Book in PDF, ePub and Kindle

Numerical simulation is a technique of major importance in various technical and scientific fields. Whilst engineering curricula now include training courses dedicated to it, numerical simulation is still not well-known in some economic sectors, and even less so among the general public. Simulation involves the mathematical modeling of the real world, coupled with the computing power offered by modern technology. Designed to perform virtual experiments, digital simulation can be considered as an "art of prediction". Embellished with a rich iconography and based on the testimony of researchers and engineers, this book shines a light on this little-known art. It is the second of two volumes and gives examples of the uses of numerical simulation in various scientific and technical fields: agriculture, industry, Earth and universe sciences, meteorology and climate studies, energy, biomechanics and human and social sciences.


Computational Fluid-Structure Interaction

Computational Fluid-Structure Interaction
Author: Yuri Bazilevs
Publisher: John Wiley & Sons
Total Pages: 444
Release: 2013-01-25
Genre: Technology & Engineering
ISBN: 111848357X

Download Computational Fluid-Structure Interaction Book in PDF, ePub and Kindle

Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.


Fluid-Structure Interactions

Fluid-Structure Interactions
Author: Michael P. Paidoussis
Publisher: Academic Press
Total Pages: 885
Release: 2013-12-07
Genre: Science
ISBN: 0123973139

Download Fluid-Structure Interactions Book in PDF, ePub and Kindle

The first of two books concentrating on the dynamics of slender bodies within or containing axial flow, Fluid-Structure Interaction, Volume 1 covers the fundamentals and mechanisms giving rise to flow-induced vibration, with a particular focus on the challenges associated with pipes conveying fluid. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes. In this edition, Chapter 7 from Volume 2 has also been moved to Volume 1, meaning that Volume 1 now mainly treats the dynamics of systems subjected to internal flow, whereas in Volume 2 the axial flow is in most cases external to the flow or annular. Provides an in-depth review of an extensive range of fluid-structure interaction topics, with detailed real-world examples and thorough referencing throughout for additional detail Organized by structure and problem type, allowing you to dip into the sections that are relevant to the particular problem you are facing, with numerous appendices containing the equations relevant to specific problems Supports development of long-term solutions by focusing on the fundamentals and mechanisms needed to understand underlying causes and operating conditions under which apparent solutions might not prove effective


Level Set Methods for Fluid-Structure Interaction

Level Set Methods for Fluid-Structure Interaction
Author: Georges-Henri Cottet
Publisher: Springer Nature
Total Pages: 203
Release: 2022-09-10
Genre: Mathematics
ISBN: 3031086597

Download Level Set Methods for Fluid-Structure Interaction Book in PDF, ePub and Kindle

This monograph is devoted to Eulerian models for fluid-structure interaction by applying the original point of view of level set methods. In the last 15 years, Eulerian models have become popular tools for studying fluid-structure interaction problems. One major advantage compared to more conventional methods such as ALE methods is that they allow the use of a single grid and a single discretization method for the different media. Level set methods in addition provide a general framework to follow the fluid-solid interfaces, to represent the elastic stresses of solids, and to model the contact forces between solids. This book offers a combination of mathematical modeling, aspects of numerical analysis, elementary codes and numerical illustrations, providing the reader with insights into ​​the applications and performance of these models. Assuming background at the level of a Master’s degree, Level Set Methods for Fluid-Structure Interaction provides researchers in the fields of numerical analysis of PDEs, theoretical and computational mechanics with a basic reference on the topic. Its pedagogical style and organization make it particularly suitable for graduate students and young researchers.


Fundamental Trends in Fluid-structure Interaction

Fundamental Trends in Fluid-structure Interaction
Author: Giovanni Paolo Galdi
Publisher: World Scientific
Total Pages: 302
Release: 2010
Genre: Science
ISBN: 9814299324

Download Fundamental Trends in Fluid-structure Interaction Book in PDF, ePub and Kindle

The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. Fundamental Trends in Fluid-Structure Interaction is a unique collection of important papers written by world-renowned experts aimed at furnishing the highest level of development in several significant areas of fluid-structure interactions. The contributions cover several aspects of this discipline, from mathematical analysis, numerical simulation and modeling viewpoints, including motion of rigid and elastic bodies in a viscous liquid, particulate flow and hemodynamic.


Recent Numerical Advances in Fluid Mechanics

Recent Numerical Advances in Fluid Mechanics
Author: Omer San
Publisher: MDPI
Total Pages: 302
Release: 2020-07-03
Genre: Technology & Engineering
ISBN: 3039364022

Download Recent Numerical Advances in Fluid Mechanics Book in PDF, ePub and Kindle

In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.