Spin Current PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Spin Current PDF full book. Access full book title Spin Current.

Spin Current

Spin Current
Author: Sadamichi Maekawa
Publisher: Oxford University Press
Total Pages: 541
Release: 2017
Genre: Science
ISBN: 0198787073

Download Spin Current Book in PDF, ePub and Kindle

In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.


Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal
Publisher: CRC Press
Total Pages: 797
Release: 2016-04-19
Genre: Science
ISBN: 1439803781

Download Handbook of Spin Transport and Magnetism Book in PDF, ePub and Kindle

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal


Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism
Author: Evgeny Y. Tsymbal
Publisher: CRC Press
Total Pages: 646
Release: 2019-06-26
Genre: Science
ISBN: 0429805268

Download Spintronics Handbook, Second Edition: Spin Transport and Magnetism Book in PDF, ePub and Kindle

Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.


Spin Dynamics in Two-Dimensional Quantum Materials

Spin Dynamics in Two-Dimensional Quantum Materials
Author: Marc Vila Tusell
Publisher: Springer Nature
Total Pages: 169
Release: 2021-11-10
Genre: Technology & Engineering
ISBN: 3030861147

Download Spin Dynamics in Two-Dimensional Quantum Materials Book in PDF, ePub and Kindle

This thesis focuses on the exploration of nontrivial spin dynamics in graphene-based devices and topological materials, using realistic theoretical models and state-of-the-art quantum transport methodologies. The main outcomes of this work are: (i) the analysis of the crossover from diffusive to ballistic spin transport regimes in ultraclean graphene nonlocal devices, and (ii) investigation of spin transport and spin dynamics phenomena (such as the (quantum) spin Hall effect) in novel topological materials, such as monolayer Weyl semimetals WeTe2 and MoTe2. Indeed, the ballistic spin transport results are key for further interpretation of ultraclean spintronic devices, and will enable extracting precise values of spin diffusion lengths in diffusive transport and guide experiments in the (quasi)ballistic regime. Furthermore, the thesis provides an in-depth theoretical interpretation of puzzling huge measured efficiencies of the spin Hall effect in MoTe2, as well as a prediction of a novel canted quantum spin Hall effect in WTe2 with spins pointing in the yz plane.


Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures

Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures
Author: Anjan Barman
Publisher: Springer
Total Pages: 166
Release: 2017-12-27
Genre: Technology & Engineering
ISBN: 3319662961

Download Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures Book in PDF, ePub and Kindle

This book provides a comprehensive overview of the latest developments in the field of spin dynamics and magnetic damping. It discusses the various ways to tune damping, specifically, dynamic and static control in a ferromagnetic layer/heavy metal layer. In addition, it addresses all optical detection techniques for the investigation of modulation of damping, for example, the time-resolved magneto-optical Kerr effect technique.


Proceedings Of The Conference In Honor Of C N Yang's 85th Birthday: Statistical Physics, High Energy, Condensed Matter And Mathematical Physics

Proceedings Of The Conference In Honor Of C N Yang's 85th Birthday: Statistical Physics, High Energy, Condensed Matter And Mathematical Physics
Author: Mo-lin Ge
Publisher: World Scientific
Total Pages: 581
Release: 2008-12-12
Genre: Science
ISBN: 9814471569

Download Proceedings Of The Conference In Honor Of C N Yang's 85th Birthday: Statistical Physics, High Energy, Condensed Matter And Mathematical Physics Book in PDF, ePub and Kindle

The Conference on Statistical Physics, High Energy, Condensed Matter and Mathematical Physics was held in honor of Professor Chen-Ning Yang's 85th birthday in Singapore in Oct-Nov 2007. The conference paid tribute to the breadth and depth of Professor Yang's achievements in physics and science education since he received his Nobel Prize in Physics fifty years ago.This notable birthday volume is a collection of the presentations made at the conference by many eminent scientists who had worked closely with him or who have been influenced to some extent by his work.


Concepts in Spin Electronics

Concepts in Spin Electronics
Author: Sadamichi Maekawa
Publisher: OUP Oxford
Total Pages: 416
Release: 2006-01-26
Genre: Technology & Engineering
ISBN: 0191524492

Download Concepts in Spin Electronics Book in PDF, ePub and Kindle

Nowadays information technology is based on semiconductor and ferromagnetic materials. Information processing and computation are based on electron charge in semiconductor transistors and integrated circuits, and information is stored on magnetic high-density hard disks based on the physics of the electron spins. Recently, a new branch of physics and nanotechnology, called magneto-electronics, spintronics, or spin electronics, has emerged, which aims at simultaneously exploiting both the charge and the spin of electrons in the same device. A broader goal is to develop new functionality that does not exist separately in a ferromagnet or a semiconductor. The aim of this book is to present new directions in the development of spin electronics in both the basic physics and the technology which will become the foundation of future electronics.


Spin Wave Confinement

Spin Wave Confinement
Author: Sergej O. Demokritov
Publisher: CRC Press
Total Pages: 509
Release: 2017-09-07
Genre: Science
ISBN: 1351617206

Download Spin Wave Confinement Book in PDF, ePub and Kindle

Since the publication of the first edition of Spin-Wave Confinement, the magnetic community’s interest in dynamic excitations in magnetic systems of reduced dimensions has been increasing. Although the concept of spin waves and their quanta (magnons) as propagating excitation of magnetic media was introduced more than 80 years ago, this field has been repeatedly bringing us fascinating new physical phenomena. The successful development of magnonics as an emerging subfield of spintronics, which considers confined spin waves as a basis for smaller, faster, more robust, and more power-efficient electronic devices, inevitably demands reduction in the sizes and dimensions of the magnetic systems being studied. The unique features of magnons, including the possibility of carrying spin information over relatively long distances, the possibility of achieving submicrometer wavelength at microwave frequencies, and controllability by electronic signal via magnetic fields, make magnonic devices distinctively suited for implementation of novel integrated electronic schemes characterized by high speed, low power consumption, and extended functionalities. Edited by S. O. Demokritov, a prominent magnonics researcher who has successfully collected the results of cutting-edge research by almost all main players in the field, this book is for everyone involved in nanotechnology, spintronics, magnonics, and nanomagnetism.


Spin Electronics

Spin Electronics
Author: David D. Awschalom
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 2013-06-29
Genre: Science
ISBN: 9401705321

Download Spin Electronics Book in PDF, ePub and Kindle

The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.


Magnetic Memory Technology

Magnetic Memory Technology
Author: Denny D. Tang
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2021-01-07
Genre: Science
ISBN: 1119562236

Download Magnetic Memory Technology Book in PDF, ePub and Kindle

STAY UP TO DATE ON THE STATE OF MRAM TECHNOLOGY AND ITS APPLICATIONS WITH THIS COMPREHENSIVE RESOURCE Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond delivers a combination of foundational and advanced treatments of the subjects necessary for students and professionals to fully understand MRAM and other non-volatile memories, like PCM, and ReRAM. The authors offer readers a thorough introduction to the fundamentals of magnetism and electron spin, as well as a comprehensive analysis of the physics of magnetic tunnel junction (MTJ) devices as it relates to memory applications. This book explores MRAM's unique ability to provide memory without requiring the atoms inside the device to move when switching states. The resulting power savings and reliability are what give MRAM its extraordinary potential. The authors describe the current state of academic research in MRAM technology, which focuses on the reduction of the amount of energy needed to reorient magnetization. Among other topics, readers will benefit from the book's discussions of: An introduction to basic electromagnetism, including the fundamentals of magnetic force and other concepts An thorough description of magnetism and magnetic materials, including the classification and properties of magnetic thin film properties and their material preparation and characterization A comprehensive description of Giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) devices and their equivalent electrical model Spin current and spin dynamics, including the properties of spin current, the Ordinary Hall Effect, the Anomalous Hall Effect, and the spin Hall effect Different categories of magnetic random-access memory, including field-write mode MRAM, Spin-Torque-Transfer (STT) MRAM, Spin-Orbit Torque (SOT) MRAM, and others Perfect for senior undergraduate and graduate students studying electrical engineering, similar programs, or courses on topics like spintronics, Magnetic Memory Technology: Spin-Transfer-Torque MRAM and Beyond also belongs on the bookshelves of engineers and other professionals involved in the design, development, and manufacture of MRAM technologies.