Sound Propagation In Moving Fluid PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Sound Propagation In Moving Fluid PDF full book. Access full book title Sound Propagation In Moving Fluid.

Sound Propagation in Moving Fluid

Sound Propagation in Moving Fluid
Author: Carol Sue Jones
Publisher:
Total Pages: 164
Release: 1996
Genre: Fluid dynamics
ISBN:

Download Sound Propagation in Moving Fluid Book in PDF, ePub and Kindle


Wave Propagation in Electromagnetic Media

Wave Propagation in Electromagnetic Media
Author: Julian L. Davis
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2012-12-06
Genre: Science
ISBN: 1461232848

Download Wave Propagation in Electromagnetic Media Book in PDF, ePub and Kindle

This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.


Springer Handbook of Acoustics

Springer Handbook of Acoustics
Author: Thomas Rossing
Publisher: Springer Science & Business Media
Total Pages: 1179
Release: 2007-06-21
Genre: Science
ISBN: 0387304460

Download Springer Handbook of Acoustics Book in PDF, ePub and Kindle

This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.


Sound-Flow Interactions

Sound-Flow Interactions
Author: Y. Auregan
Publisher: Springer
Total Pages: 302
Release: 2007-06-18
Genre: Science
ISBN: 3540458808

Download Sound-Flow Interactions Book in PDF, ePub and Kindle

The coupling between acoustic waves and fluid flow motion is basically nonlinear, with the result that flow and sound modify themselves reciprocally with respect to generation and propagation properties. As a result this problem is investigated by many different communities, such as applied mathematics, acoustics and fluid mechanics. This book is the result of an international school which was held to discuss the foundation of sound--flow interactions, to share expertise and methodologies, and to promote cross-fertilization between the different disciplines involved. It consists essentially of a set of pedagogical lectures and is meant to serve not only as a compact source of reference for the experienced researcher but also as an advanced textbook for postgraduate students, and nonspecialists wishing to familiarize themselves in depth, at a research level, with this fascinating subject.


Sound Propagation in Stratified Fluids

Sound Propagation in Stratified Fluids
Author: Calvin H. Wilcox
Publisher: Springer Science & Business Media
Total Pages: 206
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461211247

Download Sound Propagation in Stratified Fluids Book in PDF, ePub and Kindle

Stratified fluids whose densities, sound speeds and other parameters are functions of a single depth coordinate occur widely in nature. Indeed, the earth's gravitational field imposes a stratification on its atmosphere, oceans and lakes. It is well known that their stratification has a profound effect on the propagation of sound in these fluids. The most striking effect is probably the occurrence of acoustic ducts, due to minima of the sound speed, that can trap sound waves and cause them to propagate hori zontally. The reflection, transmission and distortion of sonar signals by acoustic ducts is important in interpreting sonar echoes. Signal scattering by layers of microscopic marine organisms is important to both sonar engi neers and marine biologists. Again, reflection of signals from bottom sediment layers overlying a penetrable bottom are of interest both as sources of unwanted echoes and in the acoustic probing of such layers. Many other examples could be given. The purpose of this monograph is to develop from first principles a theory of sound propagation in stratified fluids whose densities and sound speeds are essentially arbitrary functions of the depth. In physical terms, the propagation of both time-harmonic and transient fields is analyzed. The corresponding mathematical model leads to the study of boundary value problems for a scalar wave equation whose coefficients contain the pre scribed density and sound speed functions.


Vibration and Sound

Vibration and Sound
Author: Philip McCord Morse
Publisher: Acoustical Society of America
Total Pages: 500
Release: 1981
Genre: Science
ISBN:

Download Vibration and Sound Book in PDF, ePub and Kindle


Acoustics in Moving Inhomogeneous Media

Acoustics in Moving Inhomogeneous Media
Author: Vladimir E. Ostashev
Publisher: CRC Press
Total Pages: 537
Release: 2015-09-18
Genre: Technology & Engineering
ISBN: 1482266652

Download Acoustics in Moving Inhomogeneous Media Book in PDF, ePub and Kindle

Introduces Systematic Formulations for Use in Acoustic ApplicationsAcoustics in Moving Inhomogeneous Media, Second Edition offers a uniquely complete and rigorous study of sound propagation and scattering in moving media with deterministic and random inhomogeneities. This study is of great importance in many fields including atmospheric and oceanic


Understanding Acoustics

Understanding Acoustics
Author: Steven L. Garrett
Publisher: Springer
Total Pages: 913
Release: 2017-02-24
Genre: Science
ISBN: 3319499785

Download Understanding Acoustics Book in PDF, ePub and Kindle

This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.


Equations for Finite-Difference, Time-Domain Simulation of Sound Propagation in Moving Inhomogeneous Media and Numerical Implementation

Equations for Finite-Difference, Time-Domain Simulation of Sound Propagation in Moving Inhomogeneous Media and Numerical Implementation
Author:
Publisher:
Total Pages: 16
Release: 2005
Genre:
ISBN:

Download Equations for Finite-Difference, Time-Domain Simulation of Sound Propagation in Moving Inhomogeneous Media and Numerical Implementation Book in PDF, ePub and Kindle

Finite-difference, time-domain (FDTD) calculations are typically performed with partial differential equations that are first order in time. Equation sets appropriate for FDTD calculations in a moving inhomogeneous medium with an emphasis on the atmosphere! are derived and discussed in this paper. Two candidate equation sets, both derived from linearized equations of fluid dynamics, are proposed. The first, which contains three coupled equations for the sound pressure, vector acoustic velocity, and acoustic density, is obtained without any approximations. The second, which contains two coupled equations for the sound pressure and vector acoustic velocity, is derived by ignoring terms proportional to the divergence of the medium velocity and the gradient of the ambient pressure. It is shown that the second set has the same or a wider range of applicability than equations for the sound pressure that have been previously used for analytical and numerical studies of sound propagation in a moving atmosphere. Practical FDTD implementation of the second set of equations is discussed. Results show good agreement with theoretical predictions of the sound pressure due to a point monochromatic source in a uniform, high Mach number flow and with Fast Field Program calculations of sound propagation in a stratified moving atmosphere.


Wave Propagation in Solids and Fluids

Wave Propagation in Solids and Fluids
Author: Julian L. Davis
Publisher: Springer Science & Business Media
Total Pages: 396
Release: 2012-12-06
Genre: Science
ISBN: 1461238862

Download Wave Propagation in Solids and Fluids Book in PDF, ePub and Kindle

The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.