Solving Combinatorial Optimization Problems In Parallel Methods And Techniques PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Solving Combinatorial Optimization Problems In Parallel Methods And Techniques PDF full book. Access full book title Solving Combinatorial Optimization Problems In Parallel Methods And Techniques.

Solving Combinatorial Optimization Problems in Parallel Methods and Techniques

Solving Combinatorial Optimization Problems in Parallel Methods and Techniques
Author: Alfonso Ferreira
Publisher: Springer
Total Pages: 280
Release: 1996-03-27
Genre: Computers
ISBN: 9783540610434

Download Solving Combinatorial Optimization Problems in Parallel Methods and Techniques Book in PDF, ePub and Kindle

Solving combinatorial optimization problems can often lead to runtime growing exponentially as a function of the input size. But important real-world problems, industrial applications, and academic research challenges, may demand exact optimal solutions. In such situations, parallel processing can reduce the runtime from days or months, typical when one workstation is used, to a few minutes or even seconds. Partners of the CEC-sponsored SCOOP Project (Solving Combinatorial Optimization Problems in Parallel) contributed, on invitation, to this book; much attention was paid to competent coverage of the topic and the style of writing. Readers will include students, scientists, engineers, and professionals interested in the design and implementation of parallel algorithms for solving combinatorial optimization problems.


Parallel Combinatorial Optimization

Parallel Combinatorial Optimization
Author: El-Ghazali Talbi
Publisher: John Wiley & Sons
Total Pages: 348
Release: 2006-10-27
Genre: Computers
ISBN: 0470053917

Download Parallel Combinatorial Optimization Book in PDF, ePub and Kindle

This text provides an excellent balance of theory and application that enables you to deploy powerful algorithms, frameworks, and methodologies to solve complex optimization problems in a diverse range of industries. Each chapter is written by leading experts in the fields of parallel and distributed optimization. Collectively, the contributions serve as a complete reference to the field of combinatorial optimization, including details and findings of recent and ongoing investigations.


Optimization Techniques for Solving Complex Problems

Optimization Techniques for Solving Complex Problems
Author: Enrique Alba
Publisher: John Wiley & Sons
Total Pages: 500
Release: 2009-03-23
Genre: Computers
ISBN: 0470293322

Download Optimization Techniques for Solving Complex Problems Book in PDF, ePub and Kindle

Real-world problems and modern optimization techniques to solve them Here, a team of international experts brings together core ideas for solving complex problems in optimization across a wide variety of real-world settings, including computer science, engineering, transportation, telecommunications, and bioinformatics. Part One—covers methodologies for complex problem solving including genetic programming, neural networks, genetic algorithms, hybrid evolutionary algorithms, and more. Part Two—delves into applications including DNA sequencing and reconstruction, location of antennae in telecommunication networks, metaheuristics, FPGAs, problems arising in telecommunication networks, image processing, time series prediction, and more. All chapters contain examples that illustrate the applications themselves as well as the actual performance of the algorithms.?Optimization Techniques for Solving Complex Problems is a valuable resource for practitioners and researchers who work with optimization in real-world settings.


Parallel Processing of Discrete Optimization Problems

Parallel Processing of Discrete Optimization Problems
Author: Panos M. Pardalos
Publisher: American Mathematical Soc.
Total Pages: 392
Release: 1995-01-01
Genre: Mathematics
ISBN: 9780821870686

Download Parallel Processing of Discrete Optimization Problems Book in PDF, ePub and Kindle

This book contains papers presented at the Workshop on Parallel Processing of Discrete Optimization Problems held at DIMACS in April 1994. The contents cover a wide spectrum of the most recent algorithms and applications in parallel processing of discrete optimization and related problems. Topics include parallel branch and bound algorithms, scalability, load balancing, parallelism and irregular data structures and scheduling task graphs on parallel machines. Applications include parallel algorithms for solving satisfiability problems, location problems, linear programming, quadratic and linear assignment problems. This book would be suitable as a textbook in advanced courses on parallel algorithms and combinatorial optimization.


Scheduling in Parallel Computing Systems

Scheduling in Parallel Computing Systems
Author: Shaharuddin Salleh
Publisher: Springer Science & Business Media
Total Pages: 177
Release: 2012-12-06
Genre: Computers
ISBN: 1461550653

Download Scheduling in Parallel Computing Systems Book in PDF, ePub and Kindle

Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques advocates the viability of using fuzzy and annealing methods in solving scheduling problems for parallel computing systems. The book proposes new techniques for both static and dynamic scheduling, using emerging paradigms that are inspired by natural phenomena such as fuzzy logic, mean-field annealing, and simulated annealing. Systems that are designed using such techniques are often referred to in the literature as `intelligent' because of their capability to adapt to sudden changes in their environments. Moreover, most of these changes cannot be anticipated in advance or included in the original design of the system. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques provides results that prove such approaches can become viable alternatives to orthodox solutions to the scheduling problem, which are mostly based on heuristics. Although heuristics are robust and reliable when solving certain instances of the scheduling problem, they do not perform well when one needs to obtain solutions to general forms of the scheduling problem. On the other hand, techniques inspired by natural phenomena have been successfully applied for solving a wide range of combinatorial optimization problems (e.g. traveling salesman, graph partitioning). The success of these methods motivated their use in this book to solve scheduling problems that are known to be formidable combinatorial problems. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques is an excellent reference and may be used for advanced courses on the topic.


Computational Combinatorial Optimization

Computational Combinatorial Optimization
Author: Michael Jünger
Publisher: Springer
Total Pages: 310
Release: 2003-06-30
Genre: Mathematics
ISBN: 3540455868

Download Computational Combinatorial Optimization Book in PDF, ePub and Kindle

This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.


Handbook of Combinatorial Optimization

Handbook of Combinatorial Optimization
Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
Total Pages: 2410
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461303036

Download Handbook of Combinatorial Optimization Book in PDF, ePub and Kindle

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics).


Handbook of combinatorial optimization

Handbook of combinatorial optimization
Author: Dingzhu Du
Publisher: Springer Science & Business Media
Total Pages: 880
Release: 1998-12-15
Genre: Science
ISBN: 9780792352853

Download Handbook of combinatorial optimization Book in PDF, ePub and Kindle

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dual heuristics)."