Small Scale Deformation Using Advanced Nanoindentation Techniques PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Small Scale Deformation Using Advanced Nanoindentation Techniques PDF full book. Access full book title Small Scale Deformation Using Advanced Nanoindentation Techniques.

Small Scale Deformation using Advanced Nanoindentation Techniques

Small Scale Deformation using Advanced Nanoindentation Techniques
Author: Ting Tsui
Publisher: MDPI
Total Pages: 168
Release: 2019-06-11
Genre: Technology & Engineering
ISBN: 303897966X

Download Small Scale Deformation using Advanced Nanoindentation Techniques Book in PDF, ePub and Kindle

Small scale mechanical deformations have gained a significant interest over the past few decades, driven by the advances in integrated circuits and microelectromechanical systems. One of the most powerful and versatile characterization methods is the nanoindentation technique. The capabilities of these depth-sensing instruments have been improved considerably. They can perform experiments in vacuum and at high temperatures, such as in-situ SEM and TEM nanoindenters. This allows researchers to visualize mechanical deformations and dislocations motion in real time. Time-dependent behavior of soft materials has also been studied in recent research works. This Special Issue on "Small Scale Deformation using Advanced Nanoindentation Techniques"; will provide a forum for researchers from the academic and industrial communities to present advances in the field of small scale contact mechanics. Materials of interest include metals, glass, and ceramics. Manuscripts related to deformations of biomaterials and biological related specimens are also welcome. Topics of interest include, but are not limited to: Small scale facture Nanoscale plasticity and creep Size-dependent deformation phenomena Deformation of biological cells Mechanical properties of cellular and sub-cellular components Novel mechanical properties characterization techniques New modeling methods Environmentally controlled nanoindentation In-situ SEM and TEM indentation


Small Scale Deformation using Advanced Nanoindentation Techniques

Small Scale Deformation using Advanced Nanoindentation Techniques
Author: Ting Tsui
Publisher:
Total Pages: 168
Release: 2019
Genre: Technology (General)
ISBN: 9783038979678

Download Small Scale Deformation using Advanced Nanoindentation Techniques Book in PDF, ePub and Kindle

Small scale mechanical deformations have gained a significant interest over the past few decades, driven by the advances in integrated circuits and microelectromechanical systems. One of the most powerful and versatile characterization methods is the nanoindentation technique. The capabilities of these depth-sensing instruments have been improved considerably. They can perform experiments in vacuum and at high temperatures, such as in-situ SEM and TEM nanoindenters. This allows researchers to visualize mechanical deformations and dislocations motion in real time. Time-dependent behavior of soft materials has also been studied in recent research works. This Special Issue on ""Small Scale Deformation using Advanced Nanoindentation Techniques""; will provide a forum for researchers from the academic and industrial communities to present advances in the field of small scale contact mechanics. Materials of interest include metals, glass, and ceramics. Manuscripts related to deformations of biomaterials and biological related specimens are also welcome. Topics of interest include, but are not limited to.


Testing of the Plastic Deformation of Metals

Testing of the Plastic Deformation of Metals
Author: T. W. Clyne
Publisher: Cambridge University Press
Total Pages: 298
Release: 2021-06-10
Genre: Technology & Engineering
ISBN: 1108950299

Download Testing of the Plastic Deformation of Metals Book in PDF, ePub and Kindle

Discover a novel, self-contained approach to an important technical area, providing both theoretical background and practical details. Coverage includes mechanics and physical metallurgy, as well as study of both established and novel procedures such as indentation plastometry. Numerical simulation (FEM modelling) is explored thoroughly, and issues of scale are discussed in depth. Discusses procedures designed to explore plasticity under various conditions, and relates sample responses to deformation mechanisms, including microstructural effects. Features references throughout to industrial processing and component usage conditions, to a wide range of metallic alloys, and to effects of residual stresses, anisotropy and inhomogeneity within samples. A perfect tool for materials scientists, engineers and researchers involved in mechanical testing (of metals), and those involved in the development of novel materials and components.


Mechanical Testing of Materials

Mechanical Testing of Materials
Author: Emmanuel Gdoutos
Publisher: Springer Nature
Total Pages: 310
Release: 2024-01-19
Genre: Science
ISBN: 3031459903

Download Mechanical Testing of Materials Book in PDF, ePub and Kindle

This book offers a comprehensive and in-depth exploration of the most widely used test methods for characterizing the deformation and failure behavior of materials. It presents a thorough treatise on mechanical testing, providing a valuable resource for researchers, engineers, and students seeking to understand the mechanical properties and performance of materials across various applications. The book is organized into ten chapters dedicated to specific test methods including tensile, compression, bending, torsion, multiaxial, indentation, fracture, fatigue, creep, high strain rates, nondestructive evaluation, ensuring a thorough examination of each technique's principles, procedures, and applications. It features two special chapters focusing specifically on the mechanical characterization of concrete and fiber composite materials. These chapters delve into the unique aspects and challenges associated with testing and analyzing these specific materials.


Advanced Nanoindentation in Materials

Advanced Nanoindentation in Materials
Author: Ting Tsui
Publisher: MDPI
Total Pages: 237
Release: 2018-03-05
Genre: Technology & Engineering
ISBN: 3038427497

Download Advanced Nanoindentation in Materials Book in PDF, ePub and Kindle

This book is a printed edition of the Special Issue "Advanced Nanoindentation in Materials" that was published in Materials


Advanced Nanoindentation in Materials

Advanced Nanoindentation in Materials
Author:
Publisher:
Total Pages: 0
Release:
Genre: Materials testing laboratories
ISBN: 9783038427506

Download Advanced Nanoindentation in Materials Book in PDF, ePub and Kindle

Annotation This Special Issue "Advanced Nanoindentation in Materials" contains some of the latest developments in the field of small-scale contact mechanics for a wide range of materials and biological cells. The featured manuscript revealed a new ultra-high strain rate nanoindentation method that will enable new scientific understanding of time-dependent material properties. The book also presents unique material properties of super alloys and other structural materials characterized by indentation methods. In addition to engineering materials, deformation behaviors of live cancer cells on sharp pillar structures were discussed in this book with the hope to stimulate interest in the mechanical contact behaviors of biological cells.


Micromechanical Characterization of Small Volumes by Means of Nanoindentation

Micromechanical Characterization of Small Volumes by Means of Nanoindentation
Author: Núria Cuadrado Lafoz
Publisher:
Total Pages: 171
Release: 2014
Genre:
ISBN:

Download Micromechanical Characterization of Small Volumes by Means of Nanoindentation Book in PDF, ePub and Kindle

Mechanical characterization of micro-volume systems, as thin films or micro-sized phases embedded in multiphase materials, has attracted special interest in the last decades since different micromechanical techniques have been developed to characterize microdevices and materials at the micro and nano scale and it has become apparent that mechanical properties may depend on the analysis scale. An example is the way a crack grows in a bulk material that is likely to be different from crack propagation in a micro-volume where crack and microstructural dimensions are comparable. Consequently, there is a need of a detailed knowledge of material properties at micro and nano scale to design materials with advanced mechanical properties. In this way, micro and nanoscale science and technology enables to improve new materials and applications at macroscopic scale through a sound micromechanical design. The accuracy of test methodologies will depend on the size scale in which specific mechanical properties are studied. Micro scale is usually defined as the length scale in the range of 1-1000 microns, whereas nanoscale is usually defined as smaller than a one tenth of a micrometer in at least one dimension, although this term is sometimes also used for materials of larger dimension but smaller than one micrometer. Efforts to characterize the mechanical response of small volumes have led to the development of a variety of test methodologies, as uniaxial micro testing machines, micro beam cantilever deflection or nanoindentation devices. Challenges of testing at the micro scale include micro specimen preparation and handling, the application of small forces, and stress and strain measurement. Nanoindentation appears as the easiest way to study local behaviour on thin films or micro-sized phases, since no special sample preparation is required and tests can be performed quickly and inexpensively. Nanoindentation tests consist in the application of a controlled load on the specimen surface through the direct contact with a sharp diamond indenter and recording the evolution of the load versus the penetration depth of the indenter. The use in engineering of thin films, advanced coatings and materials with small tailored microstructures has led to the analysis of mechanical properties of very small volumes in which size effects might be important. Efforts to design and model the reliability of small-scale devices are directly dependent on the availability of accurate and reliable measurements of relevant mechanical properties at small scales. In designing structural or machine components an important step is the identification of the main micromechanical damage mechanisms. It is particularly interesting to determine the first fracture step, i.e., the crack nucleation in order to optimize the material resistance to crack nucleation. Stable brittle fracture takes place easily by the contact of a hard indenter on a brittle surface; this methodology is known as indentation fracture. Indentation fracture yields valuable information on the fundamental processes of brittle fracture in covalent-ionic solids, and detail on subsidiary deformation processes in the contact region; it provides ‘controlled flaws' for systematically evaluating fracture properties, and it serves as a simple microprobe for determining material fracture parameters, toughness, crack-growth exponent, etc. For materials that exhibit R-curves behaviour, it affords a much needed bridge between the short-crack domain of microstructural flaws and the long-crack domain of traditional toughness testing; mainly in the study of the first regimes of crack propagation. The great appeal of the indentation methodology is its versatility, control and simplicity, requiring only access to routine hardness testing apparatus. In order to study the mechanical behaviour of small-volumes and micro-sized phases, nanoindentation has become a suitable technique for the mechanical characterization of small-volumes and micrometer – sized phases, in terms of hardness (H), elastic modulus (E) and fracture toughness (Kc). While H and E can be routinely measured by nanoindentation from the load – displacement curves, the evaluation of Kc of hard micro-sized phases can in principle be measured from the length of the cracks at the corners of the indentation. This method of evaluation of Kc is known as Indentation Microfracture (IM) and it was proposed in the 1970s for Vickers indentation cracks in bulk materials. However, the design of new materials leads to ever smaller microstructures, hence lower loads and sharper indenters has to be used in order to concentrate the deformation and fracture only in the very small volume of phases of interest. Mechanical characterization of small volumes, has recently received much attention, and many works have focused on the determination of Kc by nanoindentation following the IM method. Nanoindentation allows using low loads needed for accurate micromechanical characterization with high spatial resolution. However, the use of a different kind of tip geometry and load range in nanoindentation technique raises some questions about the applicability of the existent fracture toughness equations which were developed in the past mainly for Vickers tips and for loads typically more than two orders of magnitude higher. Therefore, for a better knowledge of the micromechanical behaviour of brittle materials, this work is directed to the study of indentation microfracture applied to small volumes, focussing on the understanding of the fracture behaviour of brittle materials in terms of indenter tip geometry, applied load and crack morphology generated. On the other hand, since it is of a scientific and technological interest to understand the mechanical response of micro-volume systems, the feasibility of extending the IM developed for brittle bulk materials to engineering systems formed by micro-sized hard phases in multiphase materials or thin films will be also studied.


Applied Nanoindentation in Advanced Materials

Applied Nanoindentation in Advanced Materials
Author: Atul Tiwari
Publisher: John Wiley & Sons
Total Pages: 704
Release: 2017-10-30
Genre: Technology & Engineering
ISBN: 1119084490

Download Applied Nanoindentation in Advanced Materials Book in PDF, ePub and Kindle

Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.


Advanced Nanoindentation in Materials

Advanced Nanoindentation in Materials
Author: Matt Pharr (Ed.)
Publisher:
Total Pages: 236
Release: 2018
Genre: Chemistry
ISBN:

Download Advanced Nanoindentation in Materials Book in PDF, ePub and Kindle

This Special Issue "Advanced Nanoindentation in Materials" contains some of the latest developments in the field of small-scale contact mechanics for a wide range of materials and biological cells. The featured manuscript revealed a new ultra-high strain rate nanoindentation method that will enable new scientific understanding of time-dependent material properties. The book also presents unique material properties of super alloys and other structural materials characterized by indentation methods. In addition to engineering materials, deformation behaviors of live cancer cells on sharp pillar structures were discussed in this book with the hope to stimulate interest in the mechanical contact behaviors of biological cells.


Mechanics of Advanced Materials

Mechanics of Advanced Materials
Author: Vadim V. Silberschmidt
Publisher: Springer
Total Pages: 205
Release: 2015-04-09
Genre: Technology & Engineering
ISBN: 3319171186

Download Mechanics of Advanced Materials Book in PDF, ePub and Kindle

The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc. The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.