Single Molecule Studies Of Chromatin Dynamics And Transcription Coupled Repair PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Single Molecule Studies Of Chromatin Dynamics And Transcription Coupled Repair PDF full book. Access full book title Single Molecule Studies Of Chromatin Dynamics And Transcription Coupled Repair.

Single Molecule Studies Of Chromatin Dynamics And Transcription Coupled Repair

Single Molecule Studies Of Chromatin Dynamics And Transcription Coupled Repair
Author: Ming Li
Publisher:
Total Pages: 146
Release: 2016
Genre:
ISBN:

Download Single Molecule Studies Of Chromatin Dynamics And Transcription Coupled Repair Book in PDF, ePub and Kindle

Biological systems create designs that respond to the need to perform specific functions. In particular, protein-DNA complexes form unique structures to maintain the stability of genetic information and yet the dynamics for necessary cellular processes. Motor proteins translocate along, and rotate around, DNA molecules to separate DNA strands, carry out polymerization reactions, resolve topological issues, repair DNA damage, and modify DNA-binding proteins. By investigating one molecular complex at a time, single molecule techniques provide controlled and quantitative approaches to measure and manipulate the protein-DNA interactions as well as visualize the function of motor proteins in real time. These techniques have now made it possible to address many problems that are difficult or impossible to study with traditional assays In this dissertation, we first introduce DNA unzipping as a powerful tool to study protein-DNA interactions at the single-molecule level. In particular, we detail protocols for preparing an unzipping template, constructing and calibrating the instrument, and acquiring, processing, and analyzing unzipping data. We also summarize major results from utilizing this technique in the studies of nucleosome structures and dynamics. After that, we use DNA unzipping to systematically investigate the interplay between nucleosome remodeling and the binding of transcription factors. The results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes. In the last chapter, we elaborate the single molecule unzipping tracker technique and its application in understanding the function of the bacterial transcription coupled repair factor Mfd. The results provide important insights into the role of Mfd beyond the scope of transcription coupled repair and significantly contribute to the understanding of Mfd function in the larger context of transcription.


Chromatin

Chromatin
Author: Ralf Blossey
Publisher: CRC Press
Total Pages: 204
Release: 2017-08-04
Genre: Computers
ISBN: 1351646818

Download Chromatin Book in PDF, ePub and Kindle

An invaluable resource for computational biologists and researchers from other fields seeking an introduction to the topic, Chromatin: Structure, Dynamics, Regulation offers comprehensive coverage of this dynamic interdisciplinary field, from the basics to the latest research. Computational methods from statistical physics and bioinformatics are detailed whenever possible without lengthy recourse to specialized techniques.


Single Molecule Studies of Chromatin

Single Molecule Studies of Chromatin
Author: A. Noy
Publisher:
Total Pages: 48
Release: 2006
Genre:
ISBN:

Download Single Molecule Studies of Chromatin Book in PDF, ePub and Kindle

In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.


Chromatin Dynamics and Transcription Through Nucleosomes

Chromatin Dynamics and Transcription Through Nucleosomes
Author: Pooja Gupta
Publisher:
Total Pages: 162
Release: 2009
Genre: Chromatin
ISBN: 9781109532166

Download Chromatin Dynamics and Transcription Through Nucleosomes Book in PDF, ePub and Kindle

In living cells, DNA is wrapped around proteins called histones in the form of chromatin fibers which limit its accessibility to proteins and protein complexes involved in DNA transcription, replication, recombination and repair. These processes occur throughout the life of a cell, and therefore chromatin structure must change to allow the genetic information of the DNA to be processed. The classical biochemical and biophysical methods used in chromatin research are population-averaged methods, which assess properties of the whole population of macromolecules. They are neither capable of detecting possible heterogeneities among individual molecules nor of observing transitional structural changes in real-time. On the other hand, recently developed single-molecule methods allow observation of individual molecules in real-time, thus providing molecular parameters important for understanding structural dynamics. Single molecule techniques can be sorted into several groups: (i) imaging methods (AFM), (ii) fluorescence methods, used to study structural changes, either spontaneous or occurring during biochemical processes like enzymatic action, and (iii) methods that allow application and measurements of force. The latter probe the mechanical response of biomacromolecules to applied stretching force or torque. Applying single-molecule techniques to the study of chromatin is especially advantageous in view of the complexity of its structure and the enormous heterogeneity in terms of post-synthetic modifications. Nucleosome assembly and transcription are related because they address the broader issue of how cellular machineries deal with the organization of DNA into chromatin structure. The answer to these questions will lead to a better understanding of whether the enzymatic machineries, by themselves being molecular motors, can deal with chromatin structure, or whether they need the help of external factors to do so. Specifically, we aim at understanding the behaviour of the chromatin fiber upon external application of tension and/or torsion to mimic similar conditions created by physiological processes in vivo . My work is aimed at studying the dynamics of chromatin fibers and transcription through nucleosomes with the use of home-built magnetic tweezers (MT). In this instrumental set-up, a single DNA molecule is attached at one of its termini to the surface of the observation chamber and at the other terminus to a magnetic bead. Manipulation of the magnetic bead with the help of external magnets allows the introduction of positive or negative supercoiling in the DNA molecule, as well as stretching it with a defined force. This set-up was used to approach the following issues: (1) Nucleosome assembly in real-time on topologically-constrained DNA molecules using Magnetic Tweezers Assembly was achieved using chicken erythrocyte core histones and histone chaperone protein Nap1 under constant low force. We observed partial assembly when the DNA was topologically-constrained and complete assembly on unconstrained (nicked) DNA tethers. To verify that the lack of full nucleosome assembly on topologically-constrained tethers was due to compensatory accumulation of positive supercoiling in the rest of the template, we performed experiments in which we mechanically relieved the positive supercoiling by rotating the external magnetic field at certain time points of the assembly process. Such rotation did lead to complete saturation of the template with nucleosomes. (2) Effect of histone H2A.Z on transcription depending on the DNA sequence Recent observations have shown that some histone variants that are deposited in nonreplicating chromatin are found in genes that are actively transcribed. Although the phenomenology of the deposition process is more or less understood, the structural consequences of the presence of these variants are unclear. My work addresses the issue of whether the 'active' variants H3.3 and H2A.Z directly affect the ability of reconstituted nucleosomes to be transcribed. We used nucleosomal particles reconstituted with human recombinant core histones and naturally occurring nucleosome positioning sequences. T7 RNA polymerase was used as a model enzyme to transcribe reconstituted nucleosomes containing either canonical human recombinant histones, or two histone variants, H2A.Z or H3.3, whose presence has been associated with active transcription. H2A.Z-containing nucleosomes were refractive to transcription, with the actual level of transcription determined by the sequence of the underlying DNA template. These results underscore the interplay between the presence of H2A.Z and the DNA sequence in determining transcription through nucleosomes. (3) Fate of nucleosome during transcription elongation using magnetic tweezers We used an array of nucleosomes reconstituted on 18 tandem repeats of nucleosomal positioning DNA containing 208 bp. For transcription through nucleosomes we used a nucleosomal array construct and T7 RNA polymerase molecules freely moving along the DNA tether. Bulk transcription experiments were carried out to confirm that transcription occurred under our experimental conditions. In the MT experiments, transcription on the freely moving polymerase construct was achieved using transcription buffer, T7 RNA polymerase, RNase A and all four NTPs. We observed a net extension in the DNA length during transcription due to nucleosome disassembly. When analyzing the step size of both upward steps and downward steps, a dominant peak at ~50 nm was observed which may be due to the release of entire octamer.


Unraveling Chromatin

Unraveling Chromatin
Author: Shirley Sulastri Mihardja
Publisher:
Total Pages: 338
Release: 2005
Genre:
ISBN:

Download Unraveling Chromatin Book in PDF, ePub and Kindle


Introduction to Epigenetics

Introduction to Epigenetics
Author: Renato Paro
Publisher: Springer Nature
Total Pages: 215
Release: 2021-03-23
Genre: Science
ISBN: 3030686701

Download Introduction to Epigenetics Book in PDF, ePub and Kindle

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease


Photochemistry

Photochemistry
Author: Angelo Albini
Publisher: Royal Society of Chemistry
Total Pages: 237
Release: 2017-10-10
Genre: Science
ISBN: 1788013190

Download Photochemistry Book in PDF, ePub and Kindle

Drawing on the continued wealth of photochemical research, this volume combines reviews in the latest advances in the field with specific topical highlights. Starting with periodical reports of the literature from 2015-2016 on physical and inorganic aspects, light induced reactions in cryogenic matrices, triplet states on polymers and related materials, properties of transition-metal compounds and the exploitation of solar energy. Coverage continues with highlighted topics in the second part from photoredox systems for building C-C bonds from carbon dioxide, photochemistry in art, photoresponsive devices targeting nucleic acid structures, developments in photodynamic therapy devices and photocatalysis with donor-acceptor polymers. Providing critical analysis of the topics, this book is essential reading for anyone wanting to keep up to date with the literature on photochemistry and its applications.


Chromatin Regulation and Dynamics

Chromatin Regulation and Dynamics
Author: Anita Göndör
Publisher: Academic Press
Total Pages: 498
Release: 2016-10-25
Genre: Science
ISBN: 0128034025

Download Chromatin Regulation and Dynamics Book in PDF, ePub and Kindle

Chromatin Regulation and Dynamics integrates knowledge on the dynamic regulation of primary chromatin fiber with the 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes. The final chapters discuss the many ways chromatin dynamics can synergize to fundamentally contribute to the development of complex diseases. Chromatin dynamics, which is strategically positioned at the gene-environment interface, is at the core of disease development. As such, Chromatin Regulation and Dynamics, part of the Translational Epigenetics series, facilitates the flow of information between research areas such as chromatin regulation, developmental biology, and epidemiology by focusing on recent findings of the fast-moving field of chromatin regulation. Presents and discusses novel principles of chromatin regulation and dynamics with a cross-disciplinary perspective Promotes crosstalk between basic sciences and their applications in medicine Provides a framework for future studies on complex diseases by integrating various aspects of chromatin biology with cellular metabolic states, with an emphasis on the dynamic nature of chromatin and stochastic principles Integrates knowledge on the dynamic regulation of primary chromatin fiber with 3D nuclear architecture, then connects related processes to circadian regulation of cellular metabolic states, representing a paradigm of adaptation to environmental changes


Molecular Biology of The Cell

Molecular Biology of The Cell
Author: Bruce Alberts
Publisher:
Total Pages: 0
Release: 2002
Genre: Cytology
ISBN: 9780815332183

Download Molecular Biology of The Cell Book in PDF, ePub and Kindle