Simulation Of Ice Drift Behavior Behind Offshore Structures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Simulation Of Ice Drift Behavior Behind Offshore Structures PDF full book. Access full book title Simulation Of Ice Drift Behavior Behind Offshore Structures.

The Drift of Sea Ice

The Drift of Sea Ice
Author: Matti Leppäranta
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 2011-03-22
Genre: Science
ISBN: 3642046835

Download The Drift of Sea Ice Book in PDF, ePub and Kindle

The Second Edition of The Drift of Sea Ice presents the fundamental laws of sea ice drift which come from the material properties of sea ice and the basic laws of mechanics. The resulting system of equations is analysed for the general properties of sea ice drift, the free drift model and analytical models for ice drift in the presence of internal friction, and the construction of numerical ice drift models is detailed. This second edition of a much lauded work, unique on this topic in the English language, has been revised, updated and expanded with much new information and outlines recent results, in particular in relation to the climate problem, mathematical modelling and ice engineering applications. The current book presents the theory, observations, mathematical modelling techniques, and applications of sea ice drift science. The theory is presented from the beginning on a graduate student level, so that students and researchers coming from other fields such as physical oceanography, meteorology, physics, engineering, environmental sciences or geography can use the book as a source book or self-study material. First the drift ice material is presented ending with the concept of ‘ice state’ – the relevant properties in sea ice dynamics. Ice kinematics observations are widely presented with the mathematical analysis methods, and thereafter come drift ice rheology – to close the triangle material – kinematics – stress. The momentum equation of sea ice is derived in detail and its general properties are carefully analysed. Then follow two chapters on analytical models: free drift and drift in the presence of internal friction: These are very important tools in understanding the dynamical behaviour of sea ice. The last topical chapter is numerical models, which are the modern tool to solve ice dynamics problem in short term and long term problems. The closing chapter summarises sea ice dynamics applications and the need of sea ice dynamic knowledge and gives some final remarks on the future of this branch of science.


The Drift of Sea Ice

The Drift of Sea Ice
Author: Matti Leppäranta
Publisher: Springer Science & Business Media
Total Pages: 282
Release: 2007-03-06
Genre: Science
ISBN: 3540269703

Download The Drift of Sea Ice Book in PDF, ePub and Kindle

This book presents the fundamental laws of sea ice drift, as derived from the material properties of sea ice, the basic laws of mechanics, and the latest modeling techniques. Topics covered include the science of sea ice drift, forecasting velocity based on volume, size and shape, sea ice ridging and remote sensing, modelling of ice conditions, and the role of sea ice drift in oceanography, marine ecology and engineering.


Ice Mechanics and Risks to Offshore Structures

Ice Mechanics and Risks to Offshore Structures
Author: T. Sanderson
Publisher: Springer
Total Pages: 284
Release: 1988-05-31
Genre: Science
ISBN:

Download Ice Mechanics and Risks to Offshore Structures Book in PDF, ePub and Kindle

' This is a book for which Arctic ice engineers and scientists have been waiting for years. It is the first reference text to deal in a comprehensive way with ice loads on marine structures. It is also written in a clear and attractive style and it is a pleasure to read. ' Polar Record


Ice Island Creation, Drift, Recurrences, Mechanical Properties, and Interactions with Arctic Offshore Oil Production Structures. Final Report

Ice Island Creation, Drift, Recurrences, Mechanical Properties, and Interactions with Arctic Offshore Oil Production Structures. Final Report
Author:
Publisher:
Total Pages: 34
Release: 1991
Genre:
ISBN:

Download Ice Island Creation, Drift, Recurrences, Mechanical Properties, and Interactions with Arctic Offshore Oil Production Structures. Final Report Book in PDF, ePub and Kindle

Research and engineering studies on first-year sea ice for over two decades has resulted in the design, construction, and operation of jacket platforms, of artificial islands, and of massive gravity structures which routinely withstand moving sea ice of thickness up to 2 meters. However, the less-common interactions between such structures and moving multiyear ice (≥3 meters thick), and also moving ice islands (10 to 60 meters thick) remain as the unknown and potentially most serious hazard for Arctic offshore structures. In this study, research was addressed across the complete span of remaining questions regarding such features. Ice island components, thickness distributions, scenarios and models for the interactions of massive ice features with offshore structures, all were considered. Ice island morphology and calving studies were directed at the cluster of 19 ice islands produced in a calving from the Ward Hunt Ice Shelf on Ellesmere Island in 1983, and also at a calving from the Milne Ice Shelf in 1988. The statistics of ice island dynamics, on both a short-term small-scale basis and also on a long-term basis, were studied. Typical wind velocities of 5 to 7.5 meters per second led to ice island speeds of about 0.014 of the wind speed, at an angle of 20° to the right of the wind direction. Ice island samples were tested for their stress/strain characteristics. Compressive strength values ranged from 1.64 MPa at a strain rate of 2 × 10−7 s−1 to 6.75 MPa at a strain rate of 1 × 10−3 s−1. Scenarios for ice island/structure interactions were developed, and protective countermeasures such as spray ice and ice rubble barriers were suggested. Additional computer modeling of structure/ice interactions for massive ice features is recommended.


Ice Interaction with Offshore Structures

Ice Interaction with Offshore Structures
Author: A. B. Cammaert
Publisher: Van Nostrand Reinhold Company
Total Pages: 456
Release: 1988
Genre: Nature
ISBN:

Download Ice Interaction with Offshore Structures Book in PDF, ePub and Kindle


Design of Ships and Offshore Structures

Design of Ships and Offshore Structures
Author: Freeman E. Ralph
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:

Download Design of Ships and Offshore Structures Book in PDF, ePub and Kindle

Ice is a complex material that exhibits different failure properties depending on the loading rate, temperature and salinity. Under fast loading rates such as a ship ramming a multi-year (MY) ice, it fails as a brittle fracturing material. Fracture and spalling processes nonsimultaneously reshape the contact zone resulting in concentrated forces on localized contact areas. These localized High Pressure Zones (HPZs) are highly variable in time and space. The relationship between local and global processes is that the sum of n HPZs forces transferred into the structure at any point in time is the total global force transmitted to the structure. As with other fracturing materials, an inherent scale effect exists. Global pressures result from the sum of n HPZ forces averaged over the nominal contact area (e.g. the imprint of a ship's bow into the ice without correction for spalling effects). The maximum global force will generally occur at the end of a ram at the maximum nominal contact area. Due to the random occurrence of natural flaws in the ice, pressures will vary as fractures occur, continually changing the contact face. A global scale effect exists such that pressures on larger contact areas, including zones of low and zero pressure, average out to be smaller. Unlike global pressures, maximum local pressures may occur on any panel and at any point through the ram duration. Modeling exposure is important as design pressures will increase for increasing number of interaction events as well as increased penetration or duration. The scale effect for local pressures within the nominal contact area is more demanding than for global pressures such that pressures on smaller areas are considerably higher. While this is expected, given confinement can suppress damage and limit fracturing events, a force limit exists where microstructural damage occurs, softening the ice and causing HPZs to fail. Local pressures on varying panel areas were studied based on spatial HPZ density and HPZ force. Building on earlier HPZ analysis using Louis S. St. Laurent data, in this thesis HPZ density and forces were derived from analysis of four Polar Sea data sets. The occurrence and intensity of HPZs on panel areas were simulated using a Poisson Process and an exponential distribution for HPZ force. The influence of modeling HPZ cutoff force on HPZ density, HPZ force distribution as well as local pressure parameters were studied and appropriate combinations recommended. Building on the Polar Sea HPZ analysis, a new model was developed for this thesis that considers HPZ occurrence in time through a ramming event, modeling HPZ rate. This was further enhanced by correlating HPZ rate with ship speed. Such a model allows the designer to determine baseline 'parent' local pressure design parameters based on vessel size and expected operational speed. The faster a ship operates through an ice regime, the greater the HPZ rate. Larger and faster ships will penetrate further, having longer interaction durations and hence a greater number of HPZs forming (unless, for example, the ship passes through a ridge). For design, we are interested in the maximum local pressure on a single panel area through the ram duration. Rates too will vary along the vessel being greater on the bow and least from mid-body to stern. For fixed structures designed for iceberg impacts, rate and duration based on iceberg size and drift can be used to model exposure in time. For floaters, modeling HPZ formation in time provides a means to estimate dynamic global forces and mooring loads illustrating benefit of compliance effects. Modeling of HPZ occurrence over a panel area is also very attractive for structure response analysis. The random placement of n HPZs over a structural panel gives a better basis to model stress localization, which is very important for limit states design. A preliminary review of the IACS Polar Class rules was carried out in this thesis. Global impact forces are estimated using a kinetic energy collision model. Consideration for modeling ice crushing strength assumes a pressure-area relationship that is proportional to A−0·1 which is not consistent with experimental results demonstrating a scale effect proportional to A−0·4. The resultant design formulation models excessive semi-local pressures increasing with increasing semi-local contact area. While the intent is to model increasing pressures locally with increasing vessel displacement and subsequent penetration and contact area, justification for this trend suggests that there is no reason for traditional pressure area scale effects to exist and that with confinement, fracturing processes will be limited. But fracturing processes exist at all scales. The occurrence and behavior of HPZs either lead to very large stress localization that enhances fracture events or they undergo microstructure damage that softens the ice at the structure interface. While the design trend in the Polar Class rules may be okay, the background ice mechanics can be improved. An alternative collision model is developed in this thesis with an ice strength model based on data and an exposure algorithm to model pressures increasing locally with larger displacement vessels. In the mid 1990s as part of the Arctic Shipping Pollution Prevention Regulations (ASPPR) proposal reviews, a probabilistic time-step ship ram model was developed to estimate impact forces. Consistent with the ASPPR work, exposure based on annual number of collisions was mapped to each Polar Class (e.g. PC1, PC2, PC3 can expect on the order of 10000, 1000, 100 rams per year respectively). Using the MV Arctic as a test case and exercising extremal analysis, impact forces were estimated for each Polar Class. Characteristic 10−2 global forces were compared with Polar Class rule estimates. Probabilistic local pressures were also compared with rule based estimates. Assuming impacts with MY ice, preliminary results show that plating design pressures may be reasonable, with recommendation for adjustment to the Polar Class 1 coefficients to reduce conservatism, and possible increases for lower classes. Analysis should be extended to other vessels and operating conditions. A probabilistic methodology for design of ships based on the principles of safety and consequences is important and necessary both for design and safety validation. Such approaches can consider the class of the vessel on the basis of expected number of annual interactions with extreme ice features. An example illustration of a design based on an arctic shipping route, ice conditions, design strategy, risk mitigation via detection and avoidance and resultant local pressures on the hull for structural design.