Shape Memory Alloy Fracture As A Deployment Actuator PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Shape Memory Alloy Fracture As A Deployment Actuator PDF full book. Access full book title Shape Memory Alloy Fracture As A Deployment Actuator.

Shape Memory Alloy Fracture as a Deployment Actuator

Shape Memory Alloy Fracture as a Deployment Actuator
Author: Darrick Matthew Buban
Publisher:
Total Pages: 234
Release: 2013
Genre:
ISBN:

Download Shape Memory Alloy Fracture as a Deployment Actuator Book in PDF, ePub and Kindle

Many applications require deployable structures to meet operational objectives such as satellites that unfurl antenna arrays. Typically, most deployment efforts involve the use of explosive and non-explosive actuators (EAs and NEAs respectively) that have implementation drawbacks such as the expense associated with special handling and the bulk encountered with mounting the devices. To mitigate EA and NEA drawbacks, the integration of shape memory alloys (SMA) as a deployment actuator was investigated. SMA specimens were heated and pulled to failure developing an environmental and structural operating envelope for application as deployment mechanisms. A Finite Element Model (FEM) was also created to model the response behavior induced during specimen testing so that modeled performance could be used in lieu of testing when integrating SMA actuators into deployment systems. Experimental results verified that SMAs can be implemented as deployment actuators. Recorded data showed that SMA fracture is possible over a wide range of temperatures and strains, filling a material performance gap not found in the literature. The obtained information allows design engineers to appropriately size SMAs given design requirements achieving the desired deployment effects. The Finite Element Model was partially successful, capable of emulating strained ambient material behavior up to approximately 6.1%. The limited response is due to lack of experimentally derived large stress and strain available for model emulation.


Design of Shape Memory Alloy (SMA) Actuators

Design of Shape Memory Alloy (SMA) Actuators
Author: Ashwin Rao
Publisher: Springer
Total Pages: 137
Release: 2015-05-08
Genre: Science
ISBN: 3319031880

Download Design of Shape Memory Alloy (SMA) Actuators Book in PDF, ePub and Kindle

This short monograph presents an analysis and design methodology for shape memory alloy (SMA) components such as wires, beams, and springs for different applications. The solid-solid, diffusionless phase transformations in thermally responsive SMA allows them to demonstrate unique characteristics like superelasticity and shape memory effects. The combined sensing and actuating capabilities of such materials allows them to provide a system level response by combining multiple functions in a single material system. In SMA, the combined mechanical and thermal loading effects influence the functionality of such materials. The aim of this book is to make the analysis of these materials accessible to designers by developing a "strength of materials" approach to the analysis and design of such SMA components inspired from their various applications with a review of various factors influencing the design process for such materials.


Shape Memory Alloy Engineering

Shape Memory Alloy Engineering
Author: Antonio Concilio
Publisher: Butterworth-Heinemann
Total Pages: 936
Release: 2021-01-13
Genre: Technology & Engineering
ISBN: 0128192674

Download Shape Memory Alloy Engineering Book in PDF, ePub and Kindle

Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, Second Edition embraces new advancements in materials, systems and applications introduced since the first edition. Readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams. Sections address modeling and design process aspects, explore recent applications, and discuss research activities aimed at making new devices for innovative implementations. The book discusses both the potential of these fascinating materials, their limitations in everyday life, and tactics on how to overcome some limitations in order to achieve proper design of useful SMA mechanisms. Provides a greatly expanded scope, looking at new applications of SMA devices and current research activities Covers all aspects of SMA technology - from a global state-of-the-art survey, to the classification of existing materials, basic material design, material manufacture, and from device engineering design to implementation within actual systems Presents the material within a modular architecture over different topics, from material conception to practical engineering realization


Shape-Memory Alloys Handbook

Shape-Memory Alloys Handbook
Author: Christian Lexcellent
Publisher: John Wiley & Sons
Total Pages: 295
Release: 2013-04-08
Genre: Technology & Engineering
ISBN: 1118577957

Download Shape-Memory Alloys Handbook Book in PDF, ePub and Kindle

The aim of this book is to understand and describe the martensitic phase transformation and the process of martensite platelet reorientation. These two key elements enable the author to introduce the main features associated with the behavior of shape-memory alloys (SMAs), i.e. the one-way shape-memory effect, pseudo-elasticity, training and recovery. Attention is paid in particular to the thermodynamical frame for solid materials modeling at the macroscopic scale and its applications, as well as to the particular use of such alloys – the simplified calculations for the bending of bars and their torsion. Other chapters are devoted to key topics such as the use of the “crystallographical theory of martensite” for SMA modeling, phenomenological and statistical investigations of SMAs, magneto-thermo-mechanical behavior of magnetic SMAs and the fracture mechanics of SMAs. Case studies are provided on the dimensioning of SMA elements offering the reader an additional useful framework on the subject. Contents 1. Some General Points about SMAs. 2. The World of Shape-memory Alloys. 3. Martensitic Transformation. 4. Thermodynamic Framework for the Modeling of Solid Materials. 5. Use of the “CTM” to Model SMAs. 6. Phenomenological and Statistical Approaches for SMAs. 7. Macroscopic Models with Internal Variables. 8. Design of SMA Elements: Case Studies. 9. Behavior of Magnetic SMAs. 10. Fracture Mechanics of SMAs. 11. General Conclusion. Appendix 1. Intrinsic Properties of Rotation Matrices. Appendix 2. “Twinning Equation” Demonstration. Appendix 3. Calculation of the Parameters a, n and Q from the “Twinning” Equation. Appendix 4. “Twinned” Austenite/Martensite Equation. About the Authors Christian Lexcellent is Emeritus Professor at the École National Supérieure de Mécanique et des Microtechniques de Besançon and a researcher in the Department of Applied Mechanics at FEMTO-ST in France. He is a specialist in the mechanics of materials and phase transition and has taught in the subjects of mechanics of continuum media and shape memory alloys. He is also a member of the International Committee of ESOMAT.


Shape Memory Alloy Engineering

Shape Memory Alloy Engineering
Author: Antonio Concilio
Publisher: Elsevier
Total Pages: 449
Release: 2014-09-25
Genre: Technology & Engineering
ISBN: 0080999212

Download Shape Memory Alloy Engineering Book in PDF, ePub and Kindle

Shape Memory Alloy Engineering introduces materials, mechanical, and aerospace engineers to shape memory alloys (SMAs), providing a unique perspective that combines fundamental theory with new approaches to design and modeling of actual SMAs as compact and inexpensive actuators for use in aerospace and other applications. With this book readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams, allowing them to design innovative compact actuation systems for applications from aerospace and aeronautics to ships, cars, and trucks. The book realistically discusses both the potential of these fascinating materials as well as their limitations in everyday life, and how to overcome some of those limitations in order to achieve proper design of useful SMA mechanisms. Discusses material characterization processes and results for a number of newer SMAs Incorporates numerical (FE) simulation and integration procedures into commercial codes (Msc/Nastran, Abaqus, and others) Provides detailed examples on design procedures and optimization of SMA-based actuation systems for real cases, from specs to verification lab tests on physical demonstrators One of the few SMA books to include design and set-up of demonstrator characterization tests and correlation with numerical models


Shape Memory Alloys for Biomedical Applications

Shape Memory Alloys for Biomedical Applications
Author: T Yoneyama
Publisher: Elsevier
Total Pages: 354
Release: 2008-11-21
Genre: Technology & Engineering
ISBN: 1845695240

Download Shape Memory Alloys for Biomedical Applications Book in PDF, ePub and Kindle

Shape memory alloys are suitable for a wide range of biomedical applications, such as dentistry, bone repair and cardiovascular stents. Shape memory alloys for biomedical applications provides a comprehensive review of the use of shape memory alloys in these and other areas of medicine. Part one discusses fundamental issues with chapters on such topics as mechanical properties, fabrication of materials, the shape memory effect, superelasticity, surface modification and biocompatibility. Part two covers applications of shape memory alloys in areas such as stents and orthodontic devices as well as other applications in the medical and dental fields. With its distinguished editors and international team of contributors, Shape memory alloys for biomedical applications is an essential reference for materials scientists and engineers working in the medical devices industry and in academia. A comprehensive review of shape memory metals and devices for medical applications Discusses materials, mechanical properties, surface modification and biocompatibility Chapters review medical and dental devices using shape memory metals, including stents and orthodontic devices


Shape Memory and Superelastic Alloys

Shape Memory and Superelastic Alloys
Author: K Yamauchi
Publisher: Elsevier
Total Pages: 225
Release: 2011-04-30
Genre: Technology & Engineering
ISBN: 0857092626

Download Shape Memory and Superelastic Alloys Book in PDF, ePub and Kindle

Shape memory and superelastic alloys possess properties not present in ordinary metals meaning that they can be used for a variety of applications. Shape memory and superelastic alloys: Applications and technologies explores these applications discussing their key features and commercial performance. Readers will gain invaluable information and insight into the current and potential future applications of shape memory alloys.Part one covers the properties and processing of shape memory effect and superelasticity in alloys for practical users with chapters covering the basic characteristics of Ti-Ni-based and Ti-Nb-based shape memory and superelastic (SM/SE) alloys, the development and commercialisation of TiNi and Cu-based alloys, industrial processing and device elements, design of SMA coil springs for actuators before a final overview on the development of SM and SE applications. Part two introduces SMA application technologies with chapters investigating SMAs in electrical applications, hot-water supply, construction and housing, automobiles and railways and aerospace engineering before looking at the properties, processing and applications of Ferrous (Fe)-based SMAs. Part three focuses on the applications of superelastic alloys and explores their functions in the medical, telecommunications, clothing, sports and leisure industries. The appendix briefly describes the history and activity of the Association of Shape Memory Alloys (ASMA).With its distinguished editors and team of expert contributors, Shape memory and superelastic alloys: Applications and technologies is be a valuable reference tool for metallurgists as well as for designers, engineers and students involved in one of the many industries in which shape memory effect and superelasticity are used such as construction, automotive, medical, aerospace, telecommunications, water/heating, clothing, sports and leisure. Explores important applications of shape memory and superelastic alloys discussing their key features and commercial performance Assesses the properties and processing of shape memory effect and superelasticity in alloys for practical users with chapters covering the basic characteristics Introduces SMA application technologies investigating SMAs in electrical applications, hot-water supply, construction and housing, automobiles and railways and aerospace engineering


THEORETICAL AND NUMERICAL ANALYSIS OF FRACTURE OF SHAPE MEMORY ALLOYS

THEORETICAL AND NUMERICAL ANALYSIS OF FRACTURE OF SHAPE MEMORY ALLOYS
Author: Selçuk Hazar
Publisher:
Total Pages: 187
Release: 2014
Genre:
ISBN:

Download THEORETICAL AND NUMERICAL ANALYSIS OF FRACTURE OF SHAPE MEMORY ALLOYS Book in PDF, ePub and Kindle

Theoretical and numerical analysis of fracture of shape memory alloys The subject of this thesis is theoretical and numerical analysis of the fracture of SMAs.First, the size of the martensitic region surrounding the tip of an edge crack in a SMA plate is calculated analytically using the transformation function proposed by Zaki and Moumni (Zaki and Moumni, J. Mech. Phys. Sol, 2007) together with crack tip asymptotic stress equations. The transformation region is also calculated with finite elements (FE) by implementing Zaki-Moumni (ZM) model in ABAQUS through user defined material subroutine (UMAT). Transformation regions calculated analytically and computationally are compared to experimental results available in the literature (Robertson et al., Acta Mater., 2007). Second, fracture parameters like; Stress Intensity Factors (SIFs), J-integrals, energy release rates, crack tip opening displacements (CTODs) and T-stresses are evaluated. The objective is to understand the effect of phase transformation on fracture behavior of an edge cracked Nitinol plate under mode I loading. In the FE analysis of the edge cracked plate under mode I loading, ABAQUS is used with both ZM model, written through UMAT and built-in SMA model based on Auricchio's model (Auricchio et. al., Comp. Meth. Appl. Mech. Eng., 1997). J-integrals are found to be contour dependent as a result of non-homogeneity around crack tip, therefore SIFs are directly calculated from strain energy release rate and compared to the SIFs calculated using asymptotic near-tip opening displacement field equation. Third, steady state crack growth in an SMA plate is analysed. To this end, mode I steady-state crack growth in an edge-cracked Nitinol plate is modelled using a non-local stationary method. The model is implemented in ABAQUS using ZM model by means of UMAT to determine transformation zones around the crack tip. Steady-state crack growth is first simulated without considering reverse transformation to calculate the effect of transformation on stress distribution in the wake region, and then reverse transformation is taken into account. The effect of reorientation of martensite near the crack tip as a result of non-proportional loading is also studied. The stress distribution and the phase transformation region are compared to results obtained for the case of a static crack. Finally, phase transformation region are calculated analytically around the tip of an SMA specimen under mode III loading; at first the analytical method represented by Moumni (Ziad Moumni, PhD thesis, École Nationale Des Ponts Et Chaussées, 1995) in which the material model is built based on the framework of standard materials with internal constraints (Moumni et al. Int. J. Plasticity, 2008), is revisited. Using the hodograph method, the nonlinear PDE problem is transferred to a linear boundary value problem in hodograph plane and phase transformation around the tip of a crack under mode III loading is calculated analytically. The model proposed by Moumni is improved by including the thermo-mechanical coupling. As a result of the analysis, fully coupled phase transformation region and the temperature increase due to the latent heat generation is calculated numerically around the crack tip. #


Shape Memory Alloys

Shape Memory Alloys
Author: M. Fremond
Publisher: Springer
Total Pages: 152
Release: 2014-05-04
Genre: Technology & Engineering
ISBN: 3709143489

Download Shape Memory Alloys Book in PDF, ePub and Kindle

This book consists of two chapters. The first chapter deals with the thermomechanical macroscopic theory describing the transformation and deformation behavior of shape memory alloys. The second chapter deals with the extensive and fundamental review of the experimental works which include crystallography, transformations and mechanical characteristics in Ti-Ni, Cu-base and ferrous shape memory alloys.