Semiparametric Estimation Of Duration And Competing Risk Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Semiparametric Estimation Of Duration And Competing Risk Models PDF full book. Access full book title Semiparametric Estimation Of Duration And Competing Risk Models.

Competing Risks and Multistate Models with R

Competing Risks and Multistate Models with R
Author: Jan Beyersmann
Publisher: Springer Science & Business Media
Total Pages: 249
Release: 2011-11-18
Genre: Mathematics
ISBN: 1461420350

Download Competing Risks and Multistate Models with R Book in PDF, ePub and Kindle

This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.


Joint Modeling of Bivariate Time to Event Data with Semi-competing Risk

Joint Modeling of Bivariate Time to Event Data with Semi-competing Risk
Author: Ran Liao
Publisher:
Total Pages: 256
Release: 2017
Genre:
ISBN:

Download Joint Modeling of Bivariate Time to Event Data with Semi-competing Risk Book in PDF, ePub and Kindle

Survival analysis often encounters the situations of correlated multiple events including the same type of event observed from siblings or multiple events experienced by the same individual. In this dissertation, we focus on the joint modeling of bivariate time to event data with the estimation of the association parameters and also in the situation of a semi-competing risk. This dissertation contains three related topics on bivariate time to event mod els. The first topic is on estimating the cross ratio which is an association parameter between bivariate survival functions. One advantage of using cross-ratio as a depen dence measure is that it has an attractive hazard ratio interpretation by comparing two groups of interest. We compare the parametric, a two-stage semiparametric and a nonparametric approaches in simulation studies to evaluate the estimation perfor mance among the three estimation approaches. The second part is on semiparametric models of univariate time to event with a semi-competing risk. The third part is on semiparametric models of bivariate time to event with semi-competing risks. A frailty-based model framework was used to accommodate potential correlations among the multiple event times. We propose two estimation approaches. The first approach is a two stage semiparametric method where cumulative baseline hazards were estimated by nonparametric methods first and used in the likelihood function. The second approach is a penalized partial likelihood approach. Simulation studies were conducted to compare the estimation accuracy between the proposed approaches. Data from an elderly cohort were used to examine factors associated with times to multiple diseases and considering death as a semi-competing risk.


Semiparametric Estimation in Hazards Models with Censoring Indicators Missing at Random

Semiparametric Estimation in Hazards Models with Censoring Indicators Missing at Random
Author: Chunling Liu
Publisher: Open Dissertation Press
Total Pages:
Release: 2017-01-27
Genre:
ISBN: 9781374672918

Download Semiparametric Estimation in Hazards Models with Censoring Indicators Missing at Random Book in PDF, ePub and Kindle

This dissertation, "Semiparametric Estimation in Hazards Models With Censoring Indicators Missing at Random" by Chunling, Liu, 劉春玲, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b4020396 Subjects: Parameter estimation Regression analysis Competing risks


Absolute Risk

Absolute Risk
Author: Ruth M. Pfeiffer
Publisher: CRC Press
Total Pages: 201
Release: 2017-08-10
Genre: Mathematics
ISBN: 1466561688

Download Absolute Risk Book in PDF, ePub and Kindle

Absolute Risk: Methods and Applications in Clinical Management and Public Health provides theory and examples to demonstrate the importance of absolute risk in counseling patients, devising public health strategies, and clinical management. The book provides sufficient technical detail to allow statisticians, epidemiologists, and clinicians to build, test, and apply models of absolute risk. Features: Provides theoretical basis for modeling absolute risk, including competing risks and cause-specific and cumulative incidence regression Discusses various sampling designs for estimating absolute risk and criteria to evaluate models Provides details on statistical inference for the various sampling designs Discusses criteria for evaluating risk models and comparing risk models, including both general criteria and problem-specific expected losses in well-defined clinical and public health applications Describes many applications encompassing both disease prevention and prognosis, and ranging from counseling individual patients, to clinical decision making, to assessing the impact of risk-based public health strategies Discusses model updating, family-based designs, dynamic projections, and other topics Ruth M. Pfeiffer is a mathematical statistician and Fellow of the American Statistical Association, with interests in risk modeling, dimension reduction, and applications in epidemiology. She developed absolute risk models for breast cancer, colon cancer, melanoma, and second primary thyroid cancer following a childhood cancer diagnosis. Mitchell H. Gail developed the widely used "Gail model" for projecting the absolute risk of invasive breast cancer. He is a medical statistician with interests in statistical methods and applications in epidemiology and molecular medicine. He is a member of the National Academy of Medicine and former President of the American Statistical Association. Both are Senior Investigators in the Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health.


Interval-Censored Time-to-Event Data

Interval-Censored Time-to-Event Data
Author: Ding-Geng (Din) Chen
Publisher: CRC Press
Total Pages: 435
Release: 2012-07-19
Genre: Mathematics
ISBN: 1466504250

Download Interval-Censored Time-to-Event Data Book in PDF, ePub and Kindle

Interval-Censored Time-to-Event Data: Methods and Applications collects the most recent techniques, models, and computational tools for interval-censored time-to-event data. Top biostatisticians from academia, biopharmaceutical industries, and government agencies discuss how these advances are impacting clinical trials and biomedical research. Divided into three parts, the book begins with an overview of interval-censored data modeling, including nonparametric estimation, survival functions, regression analysis, multivariate data analysis, competing risks analysis, and other models for interval-censored data. The next part presents interval-censored methods for current status data, Bayesian semiparametric regression analysis of interval-censored data with monotone splines, Bayesian inferential models for interval-censored data, an estimator for identifying causal effect of treatment, and consistent variance estimation for interval-censored data. In the final part, the contributors use Monte Carlo simulation to assess biases in progression-free survival analysis as well as correct bias in interval-censored time-to-event applications. They also present adaptive decision making methods to optimize the rapid treatment of stroke, explore practical issues in using weighted logrank tests, and describe how to use two R packages. A practical guide for biomedical researchers, clinicians, biostatisticians, and graduate students in biostatistics, this volume covers the latest developments in the analysis and modeling of interval-censored time-to-event data. It shows how up-to-date statistical methods are used in biopharmaceutical and public health applications.