Self Organization In Biological Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Self Organization In Biological Systems PDF full book. Access full book title Self Organization In Biological Systems.

Self-Organization in Biological Systems

Self-Organization in Biological Systems
Author: Scott Camazine
Publisher: Princeton University Press
Total Pages:
Release: 2020-05-26
Genre: Science
ISBN: 0691212929

Download Self-Organization in Biological Systems Book in PDF, ePub and Kindle

The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.


Self-Organized Biological Dynamics and Nonlinear Control

Self-Organized Biological Dynamics and Nonlinear Control
Author: Jan Walleczek
Publisher: Cambridge University Press
Total Pages: 444
Release: 2006-04-20
Genre: Science
ISBN: 1139427598

Download Self-Organized Biological Dynamics and Nonlinear Control Book in PDF, ePub and Kindle

The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.


Molecular Mechanisms of Autonomy in Biological Systems

Molecular Mechanisms of Autonomy in Biological Systems
Author: Tara Karimi
Publisher: Springer
Total Pages: 134
Release: 2018-07-28
Genre: Science
ISBN: 3319918249

Download Molecular Mechanisms of Autonomy in Biological Systems Book in PDF, ePub and Kindle

This book presents a novel molecular description for understanding the regulatory mechanisms behind the autonomy and self-organization in biological systems. Chapters focus on defining and explaining the regulatory molecular mechanisms behind different aspects of autonomy and self-organization in the sense of autonomous coding, data processing, structure (mass) formation and energy production in a biological system. Subsequent chapters discuss the cross-talk among mechanisms of energy, and mass and information, transformation in biological systems. Other chapters focus on applications regarding therapeutic approaches in regenerative medicine. Molecular Mechanisms of Autonomy in Biological Systems is an indispensable resource for scientists and researchers in regenerative medicine, stem cell biology, molecular biology, tissue engineering, developmental biology, biochemistry, biophysics, bioinformatics, as well as big data sciences, complexity and soft computing.


Self-organization in Biological Systems

Self-organization in Biological Systems
Author: Scott Camazine
Publisher: Princeton University Press
Total Pages: 558
Release: 2003-09-17
Genre: Art
ISBN: 9780691116242

Download Self-organization in Biological Systems Book in PDF, ePub and Kindle

Biological structures built through mechanisms involving self-organization are examined in this text. Examples of such structures are termite mounds, which provide their inhabitants with a secure & stable environment. The text looks at why & how self-organization occurs in nature.


Self-Organized Criticality

Self-Organized Criticality
Author: Henrik Jeldtoft Jensen
Publisher: Cambridge University Press
Total Pages: 172
Release: 1998
Genre: Philosophy
ISBN: 9780521483711

Download Self-Organized Criticality Book in PDF, ePub and Kindle

A clear and concise introduction to this new, cross-disciplinary field.


The Origins of Order

The Origins of Order
Author: Stuart A. Kauffman
Publisher: Oxford University Press
Total Pages: 734
Release: 1993-06-10
Genre: Science
ISBN: 9780199826674

Download The Origins of Order Book in PDF, ePub and Kindle

Stuart Kauffman here presents a brilliant new paradigm for evolutionary biology, one that extends the basic concepts of Darwinian evolution to accommodate recent findings and perspectives from the fields of biology, physics, chemistry and mathematics. The book drives to the heart of the exciting debate on the origins of life and maintenance of order in complex biological systems. It focuses on the concept of self-organization: the spontaneous emergence of order that is widely observed throughout nature Kauffman argues that self-organization plays an important role in the Darwinian process of natural selection. Yet until now no systematic effort has been made to incorporate the concept of self-organization into evolutionary theory. The construction requirements which permit complex systems to adapt are poorly understood, as is the extent to which selection itself can yield systems able to adapt more successfully. This book explores these themes. It shows how complex systems, contrary to expectations, can spontaneously exhibit stunning degrees of order, and how this order, in turn, is essential for understanding the emergence and development of life on Earth. Topics include the new biotechnology of applied molecular evolution, with its important implications for developing new drugs and vaccines; the balance between order and chaos observed in many naturally occurring systems; new insights concerning the predictive power of statistical mechanics in biology; and other major issues. Indeed, the approaches investigated here may prove to be the new center around which biological science itself will evolve. The work is written for all those interested in the cutting edge of research in the life sciences.


How Nature Works

How Nature Works
Author: Per Bak
Publisher: Springer Science & Business Media
Total Pages: 229
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475754264

Download How Nature Works Book in PDF, ePub and Kindle

Self-organized criticality, the spontaneous development of systems to a critical state, is the first general theory of complex systems with a firm mathematical basis. This theory describes how many seemingly desperate aspects of the world, from stock market crashes to mass extinctions, avalanches to solar flares, all share a set of simple, easily described properties. "...a'must read'...Bak writes with such ease and lucidity, and his ideas are so intriguing...essential reading for those interested in complex systems...it will reward a sufficiently skeptical reader." -NATURE "...presents the theory (self-organized criticality) in a form easily absorbed by the non-mathematically inclined reader." -BOSTON BOOK REVIEW "I picture Bak as a kind of scientific musketeer; flamboyant, touchy, full of swagger and ready to join every fray... His book is written with panache. The style is brisk, the content stimulating. I recommend it as a bracing experience." -NEW SCIENTIST


Self-Organizing Robots

Self-Organizing Robots
Author: Satoshi Murata
Publisher: Springer Science & Business Media
Total Pages: 263
Release: 2012-01-22
Genre: Technology & Engineering
ISBN: 4431540547

Download Self-Organizing Robots Book in PDF, ePub and Kindle

It is man’s ongoing hope that a machine could somehow adapt to its environment by reorganizing itself. This is what the notion of self-organizing robots is based on. The theme of this book is to examine the feasibility of creating such robots within the limitations of current mechanical engineering. The topics comprise the following aspects of such a pursuit: the philosophy of design of self-organizing mechanical systems; self-organization in biological systems; the history of self-organizing mechanical systems; a case study of a self-assembling/self-repairing system as an autonomous distributed system; a self-organizing robot that can create its own shape and robotic motion; implementation and instrumentation of self-organizing robots; and the future of self-organizing robots. All topics are illustrated with many up-to-date examples, including those from the authors’ own work. The book does not require advanced knowledge of mathematics to be understood, and will be of great benefit to students in the robotics discipline, including in the areas of mechanics, control, electronics, and computer science. It is also an important source for researchers who wish to investigate the field of robotics or who have an interest in the application of self-organizing phenomena.


Dynamic Patterns

Dynamic Patterns
Author: J. A. Scott Kelso
Publisher: MIT Press
Total Pages: 368
Release: 1995
Genre: Behavior
ISBN: 9780262611312

Download Dynamic Patterns Book in PDF, ePub and Kindle

foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.