Self Assembled Peptide Nanostructures For Electrical Optical And Magnetic Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Self Assembled Peptide Nanostructures For Electrical Optical And Magnetic Applications PDF full book. Access full book title Self Assembled Peptide Nanostructures For Electrical Optical And Magnetic Applications.

Self-assembled Peptide Nanostructures for Electrical, Optical, and Magnetic Applications

Self-assembled Peptide Nanostructures for Electrical, Optical, and Magnetic Applications
Author: Soma Khanra
Publisher:
Total Pages: 141
Release: 2018
Genre:
ISBN:

Download Self-assembled Peptide Nanostructures for Electrical, Optical, and Magnetic Applications Book in PDF, ePub and Kindle

Bio-nanotechnology has become a widespread exciting field of research as the basic biological structure of bio-inspired materials and nanotechnology share the common length scale. Bio-nanotechnology, which is mainly based on bio-inspired nanostructured materials, has potential applications in nanomedicine, drug delivery, bio-sensors, and bio-degradable electronic devices. The nanostructures obtained from biomolecules are attractive due to their biocompatibility for molecular recognition, ease of chemical modification, and the ability to scaffold other organic and inorganic materials. Peptide nanostructures formed through the self-assembly process of the basic building block of diphenylalanine show promising applications in biodegradable electronic devices, drug delivery, catalysis agent, waveguide, and frequency converter. This research focusses on the self-assembly process in a dipeptide, L, L diphenylalanine (FF) and exploring its electronic, optical, and magnetic properties. The role of solvents in the self-assembly process of FF is explored by combining density functional theory (DFT) along with experimental characterization techniques such as electron microscopy, Raman scattering, and x-ray diffraction (XRD). One of the objectives of this work was to explore the nonlinear optical (NLO) properties of FF nanostructures via second harmonic generation (SHG). The ratio of the nonlinear optical coefficients was obtained from individual FF nanotubes as a function of the tube diameter and thermal annealing conditions. The ratio of the shear to the longitudinal component (d[subsrcipt 15]/d[subsrcipt33]) of the NLO coefficient increases with the diameter of the tubes. One of the transverse components, d[subsrcipt]31, of the NLO coefficient is found to be negative, and its magnitude with respect to the longitudinal component (d[subsrcipt33]) increases with the tube diameter. Thermal treatment of individual FF tubes has a similar effect as increasing the diameter of the tubes in SHG polarimetry. The functionalization of FF micro-nanostructures (FF-MNS) with nanomaterials was studied. FF-MNS with Ag or Au nanoparticles were explored in surface-enhanced Raman scattering (SERS). Such self-assembled nanostructures provide a natural template for tethering Au and Ag nanoparticles (Nps) due to its fractal surface. The FF-MNS undergo an irreversible phase transition from hexagonal packing (hex) to an orthorhombic (ort) structure at [tilde]150 [degree sign]C. The metal Nps form chains on hex FF-MNS as inferred from transmission electron microscopy images and a uniform non-aggregated distribution in the ort phase. The SERS spectra obtained from R6G bound to FF-MNSs with AuNps show a higher enhancement for the ort phase compared with the hex phase. The experimental results agree well with our calculated Raman spectra of model systems using DFT. Our results indicate that FF-MNS both in the hex and ort phase can be used as substrates for SERS analysis with different metal Nps, opening up a novel class of optically active bio-based substrates. The use of magnetic nanoparticles with biomolecules offers a versatile path for tuning the functionality of the composite material for several applications. The functionalization of FF-MNS with cobalt ferrite (CFO) magnetic nanoparticles was achieved. The interaction between CFO nanoparticles and FF-MNS was investigated by optical spectroscopy, x-ray photoelectron spectroscopy (XPS), and magnetization measurements. The changes in the XPS data from pristine FF-MNS and CFO:FF-MNS are indicative of a charge transfer process from CFO to FF-MNS, changing the electronic states of the Fe[superscript 2+] and Co[superscript 2+] ions. A comparison of the magnetic characterization from CFO nanoparticles and CFO:FF-MNS shows a higher saturation magnetization from the nanocomposite sample, which is attributed to a change in the cationic distribution in CFO upon binding with the peptide. We were further successful in demonstrating the application of FF-MNS as a bio-degradable active layer in an organic light emitting diode (OLED). FF-MNS were functionalized with two blue-emitting conducting polymers: di-octyl-substituted polyfluorene (PF8) and ethyl-hexyl polyfluorene (PF2/6), and used as an active layer in an OLED architecture. A combination of molecular dynamics and experimental characterization techniques reveals a stronger binding mechanism for PF8 compared to PF2/6 with FF-MNS. Biodegradability tests from FF-MNS:PF8 nanocomposite films show more than 80% weight loss in 2 h by enzymatic action compared to PF8 pristine films, which do not degrade. Self-assembled FF-MNS with organic semiconductors open up a new generation of biocompatible and biodegradable materials in organic electronics.


Peptide Self-Assembly and Engineering

Peptide Self-Assembly and Engineering
Author: Xuehai Yan
Publisher: John Wiley & Sons
Total Pages: 933
Release: 2024-02-09
Genre: Science
ISBN: 3527841253

Download Peptide Self-Assembly and Engineering Book in PDF, ePub and Kindle

Peptide Self-Assembly and Engineering State-of-the-art research in peptide self-assembly, with coverage of fundamental aspects of how peptides self-assemble and an extensive number of applications Peptide Self-Assembly and Engineering: Fundamentals, Structures, and Applications (2V set) covers the latest progresses in the field of peptide self-assembly and engineering, including the fundamental principles of peptide self-assembly, new theory of nucleation and growth, thermodynamics and kinetics, materials design rules, and precisely controlled structures and unique functions. The broad contents from this book enable readers to obtain a systematical and comprehensive knowledge in the field of peptide self-assembly and engineering. Contributed by the leading scientists and edited by a highly qualified academic and an authority in the field, Peptide Self-Assembly and Engineering includes information on: Emerging areas in peptide assembly, such as immune agents, bioelectronics, energy conversion, flexible sensors, biomimetic catalysis, and more Existing applications in biomedical engineering, nanotechnology, and photoelectronics, including tissue engineering, drug delivery, and biosensing devices History of peptide self-assembly for design of functional materials and peptides’ unique mechanical, optical, electronic, and biological properties Various solvent conditions, such as pH, ionic strength, and polarity, that can affect the structure and stability of peptide assemblies A very comprehensive reference covering the latest progresses in the field of peptide self-assembly and engineering, Peptide Self-Assembly and Engineering is an essential resource for all scientists performing research intersecting with the subject, including biochemists, biotechnologists, pharmaceutical chemists, protein chemists, materials scientists, and medicinal chemists.


Self-Assembled Peptide Nanostructures

Self-Assembled Peptide Nanostructures
Author: Jaime Castillo
Publisher: CRC Press
Total Pages: 326
Release: 2012-11-21
Genre: Medical
ISBN: 9814316946

Download Self-Assembled Peptide Nanostructures Book in PDF, ePub and Kindle

The self-organization of bionanostructures into well-defined functional machineries found in nature has been a priceless source of ideas for researchers. The molecules of life, proteins, DNA, RNA, etc., as well as the structures and forms that these molecules assume serve as rich sources of ideas for scientists or engineers who are interested in developing bio-inspired materials for innovations in biomedical fields. In nature, molecular self-assembly is a process by which complex three-dimensional structures with well-defined functions are constructed, starting from simple building blocks such as proteins and peptides. This book introduces readers to the theory and mechanisms of peptide self-assembly processes. The authors present the more common peptide self-assembled building blocks and discuss how researchers from different fields can apply self-assembling principles to bionanotechnology applications. The advantages and challenges are mentioned together with examples that reflect the state of the art of the use of self-assembled peptide building blocks in nanotechnology.


Peptide Materials

Peptide Materials
Author: Carlos Aleman
Publisher: John Wiley & Sons
Total Pages: 479
Release: 2013-03-29
Genre: Technology & Engineering
ISBN: 1118592417

Download Peptide Materials Book in PDF, ePub and Kindle

Peptides are the building blocks of the natural world; with varied sequences and structures, they enrich materials producing more complex shapes, scaffolds and chemical properties with tailorable functionality. Essentially based on self-assembly and self-organization and mimicking the strategies that occur in Nature, peptide materials have been developed to accomplish certain functions such as the creation of specific secondary structures (a- or 310-helices, b-turns, b-sheets, coiled coils) or biocompatible surfaces with predetermined properties. They also play a key role in the generation of hybrid materials e.g. as peptide-inorganic biomineralized systems and peptide/polymer conjugates, producing smart materials for imaging, bioelectronics, biosensing and molecular recognition applications. Organized into four sections, the book covers the fundamentals of peptide materials, peptide nanostructures, peptide conjugates and hybrid nanomaterials, and applications with chapters including: Properties of peptide scaffolds in solution and on solid substrates Nanostructures, peptide assembly, and peptide nanostructure design Soft spherical structures obtained from amphiphilic peptides and peptide-polymer hybrids Functionalization of carbon nanotubes with peptides Adsorption of peptides on metal and oxide surfaces Peptide applications including tissue engineering, molecular switches, peptide drugs and drug delivery Peptide Materials: From Nanostructures to Applications gives a truly interdisciplinary review, and should appeal to graduate students and researchers in the fields of materials science, nanotechnology, biomedicine and engineering as well as researchers in biomaterials and bio-inspired smart materials.


Self-Assembled Peptide Nanostructures

Self-Assembled Peptide Nanostructures
Author: Jaime Castillo
Publisher: CRC Press
Total Pages: 318
Release: 2012-11-21
Genre: Medical
ISBN: 9814364479

Download Self-Assembled Peptide Nanostructures Book in PDF, ePub and Kindle

The self-organization of bionanostructures into well-defined functional machineries found in nature has been a priceless source of ideas for researchers. The molecules of life, proteins, DNA, RNA, etc., as well as the structures and forms that these molecules assume serve as rich sources of ideas for scientists or engineers who are interested in de


One-Dimensional Nanostructures

One-Dimensional Nanostructures
Author: Tianyou Zhai
Publisher: John Wiley & Sons
Total Pages: 857
Release: 2012-10-19
Genre: Technology & Engineering
ISBN: 1118310365

Download One-Dimensional Nanostructures Book in PDF, ePub and Kindle

Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.


Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles

Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles
Author: Sebastian Ekeroth
Publisher: Linköping University Electronic Press
Total Pages: 58
Release: 2019-11-08
Genre:
ISBN: 9176850099

Download Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles Book in PDF, ePub and Kindle

Nanomaterials are important tools for enabling technological progress as they can provide dramatically different properties as compared to the bulk counterparts. The field of nanoparticles is one of the most investigated within nanomaterials, thanks to the existing, relatively simple, means of manufacturing. In this thesis, high-power pulsed hollow cathode sputtering is used to nucleate and grow magnetic nanoparticles in a plasma. This sputtering technique provides a high degree of ionization of the sputtered material, which has previously been shown to aid in the growth of the nanoparticles. The magnetic properties of the particles are utilized and makes it possible for the grown particles to act as building blocks for self-assembly into more sophisticated nano structures, particularly when an external magnetic field is applied. These structures created are termed “nanowires” or “nanotrusses”, depending on the level of branching and inter-linking that occurs. Several different elements have been investigated in this thesis. In a novel approach, it is shown how nanoparticles with more advanced structures, and containing material from two hollow cathodes, can be fabricated using high-power pulses. The dual-element particles are achieved by using two distinct and individual elemental cathodes, and a pulse process that allows tuning of individual pulses separately to them. Nanoparticles grown and investigated are Fe, Ni, Pt, Fe-Ni and Ni-Pt. Alternatively, the addition of oxygen to the process allows the formation of oxide or hybrid metal oxide – metal particles. For all nanoparticles containing several elements, it is demonstrated that the stoichiometry can be easily varied, either by the amount of reactive gas let into the process or by tuning the amount of sputtered material through adjusting the electric power supplied to the different cathodes. One aim of the presented work is to find a suitable material for the use as a catalyst in the production of H2 gas through the process of water splitting. H2 is a good candidate to replace fossil fuels as an energy carrier. However, rare elements (such as Ir or Pt) needs to be used as the catalyst, otherwise a high overpotential is required for the splitting to occur, leading to a low efficiency. This work demonstrates a possible route to avoid this, by using nanomaterials to increase the surface-to-volume ratio, as well as optimizing the elemental ratio between different materials to lower the amount of noble elements required.


Peptide-Based Materials

Peptide-Based Materials
Author: Timothy Deming
Publisher: Springer Science & Business Media
Total Pages: 184
Release: 2012-01-10
Genre: Technology & Engineering
ISBN: 3642271391

Download Peptide-Based Materials Book in PDF, ePub and Kindle

Synthesis of Polypeptides by Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides, by Jianjun Cheng and Timothy J. Deming.- Peptide Synthesis and Self-Assembly, by S. Maude, L. R. Tai, R. P. W. Davies, B. Liu, S. A. Harris, P. J. Kocienski and A. Aggeli.- Elastomeric Polypeptides, by Mark B. van Eldijk, Christopher L. McGann, Kristi L. Kiick andJan C. M. van Hest.- Self-Assembled Polypeptide and Polypeptide Hybrid Vesicles: From Synthesis to Application, by Uh-Joo Choe, Victor Z. Sun, James-Kevin Y. Tan and Daniel T. Kamei.- Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering, by Aysegul Altunbas and Darrin J. Pochan.-


Self-Assembled Peptide Nanostructures in Materials Chemistry

Self-Assembled Peptide Nanostructures in Materials Chemistry
Author: Garifullin Ruslan
Publisher: LAP Lambert Academic Publishing
Total Pages: 164
Release: 2015-12-03
Genre:
ISBN: 9783659802478

Download Self-Assembled Peptide Nanostructures in Materials Chemistry Book in PDF, ePub and Kindle

Self-assembled peptide nanostructures present a vast potential for materials science. These nanostructures are formed by self-assembly of small molecular weight molecules. Programmed assembly of peptides can be achieved by providing certain inputs at the design level. Noncovalent interactions such as electrostatic interactions, hydrogen bonding, - interactions, solvophobic effects and van der Waals forces can be used as inputs determining fate of a supramolecular ensemble. Supramolecular ensembles can be used as functional templates for the synthesis of hybrid organic-inorganic and purely inorganic nanomaterials. Peptide nanostructures can be utilized in patterning of organic materials as well. For instance, encapsulation of chromophore molecules in peptide nanostructures presents an interesting approach in controlling photophysical properties of enclosed molecules. Peptide nanostructures have shown great versatility and applicability in materials science. This fact is not surprising, because numerous phenomena taking place in nature actively exploit polypeptides as a handy tool in materials synthesis and its hierarchical organization."