Self Assembled Peptide Nanostructures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Self Assembled Peptide Nanostructures PDF full book. Access full book title Self Assembled Peptide Nanostructures.

Self-Assembled Peptide Nanostructures

Self-Assembled Peptide Nanostructures
Author: Jaime Castillo
Publisher: CRC Press
Total Pages: 326
Release: 2012-11-21
Genre: Medical
ISBN: 9814316946

Download Self-Assembled Peptide Nanostructures Book in PDF, ePub and Kindle

The self-organization of bionanostructures into well-defined functional machineries found in nature has been a priceless source of ideas for researchers. The molecules of life, proteins, DNA, RNA, etc., as well as the structures and forms that these molecules assume serve as rich sources of ideas for scientists or engineers who are interested in developing bio-inspired materials for innovations in biomedical fields. In nature, molecular self-assembly is a process by which complex three-dimensional structures with well-defined functions are constructed, starting from simple building blocks such as proteins and peptides. This book introduces readers to the theory and mechanisms of peptide self-assembly processes. The authors present the more common peptide self-assembled building blocks and discuss how researchers from different fields can apply self-assembling principles to bionanotechnology applications. The advantages and challenges are mentioned together with examples that reflect the state of the art of the use of self-assembled peptide building blocks in nanotechnology.


Self-Assembled Nanomaterials I

Self-Assembled Nanomaterials I
Author: Toshimi Shimizu
Publisher: Springer
Total Pages: 186
Release: 2008-09-09
Genre: Technology & Engineering
ISBN: 3540851038

Download Self-Assembled Nanomaterials I Book in PDF, ePub and Kindle

This text was ranked by ISI as having the Highest Impact Factor of all publications within Polymer Science. It is a collection of concise reports on the physics and chemistry of polymers.


Nanostructures for Novel Therapy

Nanostructures for Novel Therapy
Author: Denisa Ficai
Publisher: Elsevier
Total Pages: 908
Release: 2017-02-25
Genre: Technology & Engineering
ISBN: 0323461484

Download Nanostructures for Novel Therapy Book in PDF, ePub and Kindle

Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeutic applications of nanostructured materials that includes applications of nanostructured materials for wound healing in plastic surgery and stem cell therapy. The book explores the promise for more effective therapy through the use of nanostructured materials, while also assessing the challenges their use might pose from both an economic and medicinal point of view. This innovative look at how nanostructured materials are used in therapeutics will be of great benefit to researchers, providing a greater understanding of the different ways nanomaterials could improve medical treatment, along with a discussion of the obstacles that need to be overcome in order to guarantee widespread availability. Outlines how the characteristics of nanostructures made from different materials gives particular properties that can be successfully used in therapeutics Compares the properties of different nanostructures, allowing medicinal chemists and engineers to select which are most appropriate for their needs Highlights new uses of nanostructures within the therapeutic field, enabling the discovery of new, more effective drugs


Self-Assembled Peptide Nanostructures in Materials Chemistry

Self-Assembled Peptide Nanostructures in Materials Chemistry
Author: Garifullin Ruslan
Publisher: LAP Lambert Academic Publishing
Total Pages: 164
Release: 2015-12-03
Genre:
ISBN: 9783659802478

Download Self-Assembled Peptide Nanostructures in Materials Chemistry Book in PDF, ePub and Kindle

Self-assembled peptide nanostructures present a vast potential for materials science. These nanostructures are formed by self-assembly of small molecular weight molecules. Programmed assembly of peptides can be achieved by providing certain inputs at the design level. Noncovalent interactions such as electrostatic interactions, hydrogen bonding, - interactions, solvophobic effects and van der Waals forces can be used as inputs determining fate of a supramolecular ensemble. Supramolecular ensembles can be used as functional templates for the synthesis of hybrid organic-inorganic and purely inorganic nanomaterials. Peptide nanostructures can be utilized in patterning of organic materials as well. For instance, encapsulation of chromophore molecules in peptide nanostructures presents an interesting approach in controlling photophysical properties of enclosed molecules. Peptide nanostructures have shown great versatility and applicability in materials science. This fact is not surprising, because numerous phenomena taking place in nature actively exploit polypeptides as a handy tool in materials synthesis and its hierarchical organization."


Nanoscale Assembly

Nanoscale Assembly
Author: Wilhelm T.S. Huck
Publisher: Springer Science & Business Media
Total Pages: 249
Release: 2006-07-11
Genre: Technology & Engineering
ISBN: 0387256563

Download Nanoscale Assembly Book in PDF, ePub and Kindle

Nanotechnology has received tremendous interest over the last decade, not only from the scientific community but also from a business perspective and from the general public. Although nanotechnology is still at the largely unexplored frontier of science, it has the potential for extremely exciting technological innovations that will have an enormous impact on areas as diverse as information technology, medicine, energy supply and probably many others. The miniturization of devices and structures will impact the speed of devices and information storage capacity. More importantly, though, nanotechnology should lead to completely new functional devices as nanostructures have fundamentally different physical properties that are governed by quantum effects. When nanometer sized features are fabricated in materials that are currently used in electronic, magnetic, and optical applications, quantum behavior will lead to a set of unprecedented properties. The interactions of nanostructures with biological materials are largely unexplored. Future work in this direction should yield enabling technologies that allows the study and direct manipulation of biological processes at the (sub) cellular level.


Protein Self-Assembly

Protein Self-Assembly
Author: Jennifer J. McManus
Publisher: Humana
Total Pages: 266
Release: 2020-08-08
Genre: Science
ISBN: 9781493996803

Download Protein Self-Assembly Book in PDF, ePub and Kindle

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.


Peptide-Based Materials

Peptide-Based Materials
Author: Timothy Deming
Publisher: Springer Science & Business Media
Total Pages: 184
Release: 2012-01-10
Genre: Technology & Engineering
ISBN: 3642271391

Download Peptide-Based Materials Book in PDF, ePub and Kindle

Synthesis of Polypeptides by Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides, by Jianjun Cheng and Timothy J. Deming.- Peptide Synthesis and Self-Assembly, by S. Maude, L. R. Tai, R. P. W. Davies, B. Liu, S. A. Harris, P. J. Kocienski and A. Aggeli.- Elastomeric Polypeptides, by Mark B. van Eldijk, Christopher L. McGann, Kristi L. Kiick andJan C. M. van Hest.- Self-Assembled Polypeptide and Polypeptide Hybrid Vesicles: From Synthesis to Application, by Uh-Joo Choe, Victor Z. Sun, James-Kevin Y. Tan and Daniel T. Kamei.- Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering, by Aysegul Altunbas and Darrin J. Pochan.-


Peptides and Peptide-based Biomaterials and their Biomedical Applications

Peptides and Peptide-based Biomaterials and their Biomedical Applications
Author: Anwar Sunna
Publisher: Springer
Total Pages: 309
Release: 2017-10-26
Genre: Science
ISBN: 3319660950

Download Peptides and Peptide-based Biomaterials and their Biomedical Applications Book in PDF, ePub and Kindle

Solid-binding peptides have been used increasingly as molecular building blocks in nanobiotechnology as they can direct the assembly and functionalisation of a diverse range of materials and have the ability to regulate the synthesis of nanoparticles and complex nanostructures. Nanostructured materials such as β-sheet fibril-forming peptides and α-helical coiled coil systems have displayed many useful properties including stimulus-responsiveness, modularity and multi-functionality, providing potential technological applications in tissue engineering, antimicrobials, drug delivery and nanoscale electronics. The current situation with respect to self-assembling peptides and bioactive matrices for regenerative medicine are reviewed, as well as peptide-target modeling and an examination of future prospects for peptides in these areas.


Micro and Nanofabrication Using Self-Assembled Biological Nanostructures

Micro and Nanofabrication Using Self-Assembled Biological Nanostructures
Author: Jaime Castillo-León
Publisher: William Andrew
Total Pages: 126
Release: 2014-09-09
Genre: Technology & Engineering
ISBN: 0323296521

Download Micro and Nanofabrication Using Self-Assembled Biological Nanostructures Book in PDF, ePub and Kindle

Self-assembled nanostructures based on peptides and proteins have been investigated and presented as biomaterials with an impressive potential for a broad range of applications such as microfabrication, biosensing platforms, drug delivery systems, bioelectronics and tissue reparation. Through self-assembly peptides can give rise to a range of well-defined nanostructures such as nanotubes, nanofibers, nanoparticles, nanotapes, gels and nanorods. However, there are challenges when trying to integrate these biological nanostructures in the development of sensing devices or drug-delivery systems – challenges such as controlling the size during synthesis, the stability in liquid environments and manipulation. In "Micro and Nanofabrication Using Self-assembled Biological Nanostructures" the options and challenges when using self-assembled peptide nanostructures in micro and nanofabrication are discussed. The publication covers different ways to manipulate, deposit and immobilize on specific locations these biological nanostructures in order to use them in the fabrication of new structures or as part of biosensing platforms. Examples where researchers used biological nanostructures for those types of applications are provided. Finally, future applications are discussed as well as parameters to accelerate and expand the use of these biological building blocks in nano- and micro-fabrication processes by taking advantage of their impressive properties such as low-cost and short synthesis time.


Self-assembled Peptide Nanostructures for Electrical, Optical, and Magnetic Applications

Self-assembled Peptide Nanostructures for Electrical, Optical, and Magnetic Applications
Author: Soma Khanra
Publisher:
Total Pages: 141
Release: 2018
Genre:
ISBN:

Download Self-assembled Peptide Nanostructures for Electrical, Optical, and Magnetic Applications Book in PDF, ePub and Kindle

Bio-nanotechnology has become a widespread exciting field of research as the basic biological structure of bio-inspired materials and nanotechnology share the common length scale. Bio-nanotechnology, which is mainly based on bio-inspired nanostructured materials, has potential applications in nanomedicine, drug delivery, bio-sensors, and bio-degradable electronic devices. The nanostructures obtained from biomolecules are attractive due to their biocompatibility for molecular recognition, ease of chemical modification, and the ability to scaffold other organic and inorganic materials. Peptide nanostructures formed through the self-assembly process of the basic building block of diphenylalanine show promising applications in biodegradable electronic devices, drug delivery, catalysis agent, waveguide, and frequency converter. This research focusses on the self-assembly process in a dipeptide, L, L diphenylalanine (FF) and exploring its electronic, optical, and magnetic properties. The role of solvents in the self-assembly process of FF is explored by combining density functional theory (DFT) along with experimental characterization techniques such as electron microscopy, Raman scattering, and x-ray diffraction (XRD). One of the objectives of this work was to explore the nonlinear optical (NLO) properties of FF nanostructures via second harmonic generation (SHG). The ratio of the nonlinear optical coefficients was obtained from individual FF nanotubes as a function of the tube diameter and thermal annealing conditions. The ratio of the shear to the longitudinal component (d[subsrcipt 15]/d[subsrcipt33]) of the NLO coefficient increases with the diameter of the tubes. One of the transverse components, d[subsrcipt]31, of the NLO coefficient is found to be negative, and its magnitude with respect to the longitudinal component (d[subsrcipt33]) increases with the tube diameter. Thermal treatment of individual FF tubes has a similar effect as increasing the diameter of the tubes in SHG polarimetry. The functionalization of FF micro-nanostructures (FF-MNS) with nanomaterials was studied. FF-MNS with Ag or Au nanoparticles were explored in surface-enhanced Raman scattering (SERS). Such self-assembled nanostructures provide a natural template for tethering Au and Ag nanoparticles (Nps) due to its fractal surface. The FF-MNS undergo an irreversible phase transition from hexagonal packing (hex) to an orthorhombic (ort) structure at [tilde]150 [degree sign]C. The metal Nps form chains on hex FF-MNS as inferred from transmission electron microscopy images and a uniform non-aggregated distribution in the ort phase. The SERS spectra obtained from R6G bound to FF-MNSs with AuNps show a higher enhancement for the ort phase compared with the hex phase. The experimental results agree well with our calculated Raman spectra of model systems using DFT. Our results indicate that FF-MNS both in the hex and ort phase can be used as substrates for SERS analysis with different metal Nps, opening up a novel class of optically active bio-based substrates. The use of magnetic nanoparticles with biomolecules offers a versatile path for tuning the functionality of the composite material for several applications. The functionalization of FF-MNS with cobalt ferrite (CFO) magnetic nanoparticles was achieved. The interaction between CFO nanoparticles and FF-MNS was investigated by optical spectroscopy, x-ray photoelectron spectroscopy (XPS), and magnetization measurements. The changes in the XPS data from pristine FF-MNS and CFO:FF-MNS are indicative of a charge transfer process from CFO to FF-MNS, changing the electronic states of the Fe[superscript 2+] and Co[superscript 2+] ions. A comparison of the magnetic characterization from CFO nanoparticles and CFO:FF-MNS shows a higher saturation magnetization from the nanocomposite sample, which is attributed to a change in the cationic distribution in CFO upon binding with the peptide. We were further successful in demonstrating the application of FF-MNS as a bio-degradable active layer in an organic light emitting diode (OLED). FF-MNS were functionalized with two blue-emitting conducting polymers: di-octyl-substituted polyfluorene (PF8) and ethyl-hexyl polyfluorene (PF2/6), and used as an active layer in an OLED architecture. A combination of molecular dynamics and experimental characterization techniques reveals a stronger binding mechanism for PF8 compared to PF2/6 with FF-MNS. Biodegradability tests from FF-MNS:PF8 nanocomposite films show more than 80% weight loss in 2 h by enzymatic action compared to PF8 pristine films, which do not degrade. Self-assembled FF-MNS with organic semiconductors open up a new generation of biocompatible and biodegradable materials in organic electronics.