Seismogeodetic Studies Of The Crustal Deformation Cycle For Hazards Mitigation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Seismogeodetic Studies Of The Crustal Deformation Cycle For Hazards Mitigation PDF full book. Access full book title Seismogeodetic Studies Of The Crustal Deformation Cycle For Hazards Mitigation.

Seismogeodetic Studies of the Crustal Deformation Cycle for Hazards Mitigation

Seismogeodetic Studies of the Crustal Deformation Cycle for Hazards Mitigation
Author: Dorian Golriz
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Seismogeodetic Studies of the Crustal Deformation Cycle for Hazards Mitigation Book in PDF, ePub and Kindle

This dissertation presents several studies focusing on the three phases of the crustal deformation cycle. Using an optimal combination of seismic and space geodetic techniques, we investigate the coseismic phase of an earthquake that includes both shaking and permanent displacements, the postseismic phase where additional slip may occur around the affected region, and the interseismic phase over which stress builds-up at the interface between tectonic plates. Studying the crustal deformation cycle has important implications for understanding tectonic fault zone processes such as slip partitioning and strain accumulation, and to improve real-time systems for tsunami and earthquake early warnings. We first apply a physics-based approach to identify the transition from coseismic to postseismic deformation, and show how early postseismic is significant just minutes to hours after an earthquake. Our results show that the widely used estimates of daily coseismic offsets can lead to an overprediction of earthquake coseismic displacements. We compare the commonly used daily offsets and our rapid coseismic window methodology over several earthquakes and demonstrate that without consideration of the early postseismic stages, both coseismic and postseismic fault slip models can be biased by several meters. We then use the coseismic time window analysis and rely on earthquake source theory to develop a rapid earthquake magnitude determination method. To test our approach, we simulate a real-time environment by replaying historical earthquakes around the Pacific basin. Our results show that we can reliably estimate earthquake magnitude over the 7.2


Crustal Deformation During Co- and Postseismic Phases of the Earthquake Cycle Inferred from Geodetic and Seismic Data

Crustal Deformation During Co- and Postseismic Phases of the Earthquake Cycle Inferred from Geodetic and Seismic Data
Author: Mong-Han Huang
Publisher:
Total Pages: 180
Release: 2014
Genre:
ISBN:

Download Crustal Deformation During Co- and Postseismic Phases of the Earthquake Cycle Inferred from Geodetic and Seismic Data Book in PDF, ePub and Kindle

The work presented in my dissertation focuses on the crustal deformation during the co- and postseismic periods in earthquake cycles. I use geodetic and seismic data to constrain and better understand the behavior of the earthquake source during the coseismic period. For the postseismic period, I use geodetic data to observe the surface displacements from centimeter-scale to millimeter-scale from an Mw 7.9 and Mw 6.9 event, respectively. I model different mechanisms to explain the postseismic deformation and to further constrain the crustal and upper mantle rheology. For the coseismic earthquake source study, I explore the source of the 2010 Mw 6.3 Jia-Shian, Taiwan earthquake. I develop finite-source models using a combination of seismic data (strong motion and broadband) and geodetic data (InSAR and GPS) to understand the rupture process and slip distribution of this event. The main shock is a thrust event with a small left-lateral component. Both the main shock and aftershocks are located in a transition zone where the depth of seismicity and an inferred regional basal detachment increases from central to southern Taiwan. The depth of this event and the orientation of its compressional axis suggest that this event involves the reactivation of a deep and weak pre-existing NW-SE geological structure. The 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity since the 1906 San Francisco (Mw 7.9) earthquake to study postseismic relaxation processes and estimate rheological parameters in the region with modern space geodetic tools. The first five years postseismic displacements can be interpreted to be due to aseismic right-oblique fault slip on or near the coseismic rupture, as well as thrusting up-dip of the rupture within the Foothills thrust belt. However, continuing transient surface displacements (d"5 mm/yr) until 2002 revealed by PSInSAR and GPS in the northern Santa Cruz Mountains may indicate a longer-term postseismic deformation. I model the viscoelastic relaxation of the lower crust and upper mantle following the Loma Prieta earthquake to explain the surface displacement. A 14-km-thick lower crust (16 - 30 km depth) viscosity of> 1019 Pa s and an upper mantle viscosity of ~1018 Pa s best explain the geodetic data. The weak upper mantle viscosity in this area is in good agreement with upper mantle rheology in southern California (0.46 - 5 × 1019 Pa s) using a similar approach from studying the postseismic deformation following the 1999 (Mw 7.1) Hector Mine earthquake. Periods of accelerated postseismic deformation following large earthquakes reflect the response of the Earth's lithosphere to sudden coseismic stress changes. I investigate postseismic displacements following the 2008 Wenchuan (Mw 7.9), China earthquake in eastern Tibet and probe the differences in rheological properties across the edge of the Tibetan Plateau. Based on nearly two years of GPS and InSAR measurements, I find that the shallow afterslip on the Beichuan Fault can explain the near-field displacements, and the far-field displacements can be explained by a viscoelastic lower crust beneath Tibet with an initial effective viscosity of 4.4 × 1017 Pa s and a long-term viscosity of 1018 Pa s. On the other hand, the Sichuan Basin block has a high-viscosity upper mantle (> 1020 Pa s) underlying an elastic 35-km-thick crust. The inferred strong contrast in lithospheric rheologies between the Tibetan Plateau and the Sichuan Basin is consistent with models of ductile lower crustal flow that predict maximum topographic gradients across the Plateau margins where viscosity differences are greatest. With additional 6-year-long continuous GPS measurements deployed in the eastern Tibetan Plateau and the Sichuan Basin, viscoelastic relaxation models with the same geometry setups suggests Tibetan lower crust with an initial effective viscosity of 9 × 1017 Pa s and steady-state viscosity of 1019 Pa s. I also use the laboratory experiments derived power law flow model to fit the postseismic deformation. The viscosity estimated from this model varies with material parameters (e.g. grain size, water content, etc.) as well as environmental parameters (temperature, pressure, background strain rate, etc.). The diffusion creep refers to the power law flow mainly controlled by the mineral grain size, and the dislocation creep refers to it mainly controlled by the background stress level. For a diffusion creep type of power law flow, a Tibetan crust composed of wet feldspar (water content = 1000 H/106Si; grain size = 1 - 4 mm) and upper mantle composed of wet olivine (water content = 200 H/106Si; grain size = ~2 mm) can predict the 6-year-long poseismic time series well. This result roughly agrees with rock mechanics laboratory experiments. The channel flow model predicts the plateau margins are steepest where the viscosity of the surrounding blocks are highest. The low viscosity in the Tibetan lower crust and the contrasting rheology across the plateau margin derived from postseismic deformation are consistent with the channel flow model.


Earthquake and Volcano Deformation

Earthquake and Volcano Deformation
Author: Paul Segall
Publisher: Princeton University Press
Total Pages: 465
Release: 2010-01-04
Genre: Science
ISBN: 140083385X

Download Earthquake and Volcano Deformation Book in PDF, ePub and Kindle

Earthquake and Volcano Deformation is the first textbook to present the mechanical models of earthquake and volcanic processes, emphasizing earth-surface deformations that can be compared with observations from Global Positioning System (GPS) receivers, Interferometric Radar (InSAR), and borehole strain- and tiltmeters. Paul Segall provides the physical and mathematical fundamentals for the models used to interpret deformation measurements near active faults and volcanic centers. Segall highlights analytical methods of continuum mechanics applied to problems of active crustal deformation. Topics include elastic dislocation theory in homogeneous and layered half-spaces, crack models of faults and planar intrusions, elastic fields due to pressurized spherical and ellipsoidal magma chambers, time-dependent deformation resulting from faulting in an elastic layer overlying a viscoelastic half-space and related earthquake cycle models, poroelastic effects due to faulting and magma chamber inflation in a fluid-saturated crust, and the effects of gravity on deformation. He also explains changes in the gravitational field due to faulting and magmatic intrusion, effects of irregular surface topography and earth curvature, and modern concepts in rate- and state-dependent fault friction. This textbook presents sample calculations and compares model predictions against field data from seismic and volcanic settings from around the world. Earthquake and Volcano Deformation requires working knowledge of stress and strain, and advanced calculus. It is appropriate for advanced undergraduates and graduate students in geophysics, geology, and engineering. Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html


Crustal Deformation Associated with Great Subduction Earthquakes

Crustal Deformation Associated with Great Subduction Earthquakes
Author: Tianhaozhe Sun
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

Download Crustal Deformation Associated with Great Subduction Earthquakes Book in PDF, ePub and Kindle

The slip behaviour of subduction faults and the viscoelastic rheology of Earth's mantle govern crustal deformation throughout the subduction earthquake cycle. This Ph.D. dissertation presents research results on two topics: (1) coseismic and postseismic slip of the shallowest segment of subduction faults and (2) postseismic deformation following great subduction earthquakes controlled by mantle viscoelasticity. Topic 1: Slip behaviour of the shallowest subduction faults. By modelling high-resolution cross-trench bathymetry surveys before and after the 2011 Mw 9.0 Tohoku-oki earthquake, we determine the magnitude and distribution of coseismic slip over the most near-trench 40 km of the Japan Trench megathrust. The inferred > 60 m average slip and a gentle increase by 5 m towards the trench over this distance indicate moderate degree of net coseismic weakening of the shallow fault. Using near-trench seafloor and sub-seafloor fluid pressure variations as strain indicators in conjunction with land-based geodetic measurements, we determine coseismic-slip and afterslip distributions of the 2012 Mw 7.6 Costa Rica earthquake. Here, trench-breaching slip similar to the Tohoku-oki rupture did not occur during the earthquake, but afterslip extended to the trench axis and reached ~0.7 m over 1.3 years after the earthquake, exhibiting a velocity-strengthening behaviour. These two contrasting examples bracket a possibly wide range of slip behaviour of the shallow megathrust. They help us understand why large tsunamis are generated by some but not all subduction earthquakes. Topic 2: Postseismic deformation following great subduction earthquakes. Due to the asymmetry of megathrust rupture, with the upper plate undergoing greater coseismic tension than the incoming plate, viscoelastic stress relaxation causes the trench and land areas to move in opposite, opposing directions immediately after the earthquake. Seafloor geodetic measurements following the 2011 Tohoku-oki earthquake, modelled in this work, provided the first direct observational evidence for this effect. Systematic modelling studies in this work suggest that such viscoelastic opposing motion should be common to all Mw ≥ 8 subduction earthquakes. As the effect of viscoelastic relaxation decays with time and the effect of fault relocking becomes increasingly dominant, the dividing boundary of the opposing motion continues to migrate away from the rupture area. Comparative studies of ten 8 ≤ Mw ≤ 9.5 subduction earthquakes in this dissertation quantifies the primary role of earthquake size in controlling the "speed" of the evolution of this deformation. Larger earthquakes are followed by longer-lived opposing motion that affects a broader region of the upper plate.


Earthquake Cycle Research with Satellites

Earthquake Cycle Research with Satellites
Author: Nathan R. Hicks
Publisher: Anjum Publishers
Total Pages: 0
Release: 2023-09-18
Genre:
ISBN: 9787393838427

Download Earthquake Cycle Research with Satellites Book in PDF, ePub and Kindle

The motion of the Earth's tectonic plates creates a gradual accumulation of stress at their boundaries, followed by a rapid release in earthquakes, a process known as the earthquake cycle. Studying this process is important because of the hazards earthquakes pose, but presents challenges due to the multi-scale nature of the problem-stresses build up over hundreds to thousands of years, while earthquakes break narrow fault zones in a matter of seconds. In this thesis, we combine a variety of techniques to study the earthquake cycle on multiple temporal and spatial scales, including satellite-based interferometric synthetic aperture radar (InSAR) to observe the slow deformation of the Earth over wide areas, and high-performance computational simulations to model faults during earthquakes. We begin by presenting a method for removing the signal of plate-tectonic motion in large-scale InSAR measurements, allowing for better observation of small ground deformations.


Geodetic Imaging of the Earthquake Cycle

Geodetic Imaging of the Earthquake Cycle
Author: Xiaopeng Tong
Publisher:
Total Pages: 178
Release: 2013
Genre:
ISBN: 9781303212383

Download Geodetic Imaging of the Earthquake Cycle Book in PDF, ePub and Kindle

In this dissertation I used Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) to recover crustal deformation caused by earthquake cycle processes. The studied areas span three different types of tectonic boundaries: a continental thrust earthquake (M7.9 Wenchuan, China) at the eastern margin of the Tibet plateau, a mega-thrust earthquake (M8.8 Maule, Chile) at the Chile subduction zone, and the interseismic deformation of the San Andreas Fault System (SAFS). A new L-band radar onboard a Japanese satellite ALOS allows us to image high-resolution surface deformation in vegetated areas, which is not possible with older C-band radar systems. In particular, both the Wenchuan and Maule InSAR analyses involved L-band ScanSAR interferometry which had not been attempted before. I integrated a large InSAR dataset with dense GPS networks over the entire SAFS. The integration approach features combining the long-wavelength deformation from GPS with the short-wavelength deformation from InSAR through a physical model. The recovered fine-scale surface deformation leads us to better understand the underlying earthquake cycle processes. The geodetic slip inversion reveals that the fault slip of the Wenchuan earthquake is maximum near the surface and decreases with depth. The coseismic slip model of the Maule earthquake constrains the down-dip extent of the fault slip to be at 45 km depth, similar to the Moho depth. I inverted for the slip rate on 51 major faults of the SAFS using Green's functions for a 3-dimensional earthquake cycle model that includes kinematically prescribed slip events for the past earthquakes since the year 1000. A 60 km thick plate model with effective viscosity of 1019 Pa · s is preferred based on the geodetic and geological observations. The slip rates recovered from the plate models are compared to the half-space model. The InSAR observation reveals that the creeping section of the SAFS is partially locked. This high-resolution deformation model will refine the moment accumulation rates and shear strain rates, which are not well resolved by previous models.


Deformation Processes in Great Subduction Zone Earthquake Cycles

Deformation Processes in Great Subduction Zone Earthquake Cycles
Author: Yan Hu
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Deformation Processes in Great Subduction Zone Earthquake Cycles Book in PDF, ePub and Kindle

This dissertation consists of two parts and investigates the crustal deformation associated with great subduction zone earthquake at two different spatial scales. At the small scale, I investigate the stress transfer along the megathrust during great earthquakes and its effects on the forearc wedge. At the large scale, I investigate the viscoelastic crustal deformation of the forearc and the back arc associated with great earthquakes. Part I: In a subduction zone, the frontal region of the forearc can be morphologically divided into the outer wedge and the inner wedge. The outer wedge which features much active plastic deformation has a surface slope angle generally larger than that of the inner wedge which hosts stable geological formations. The megathrust can be represented by a three-segment model, the updip zone (velocity-strengthening), seismogenic zone (velocity-weakening), and downdip zone (velocity-strengthening). Our dynamic Coulomb wedge theory postulates that the outer wedge overlies the updip zone, and the inner wedge overlies the seismogenic zone. During an earthquake, strengthening of the updip zone may result in compressive failure in the outer wedge. The inner wedge undergoes elastic deformation. I have examined the geometry and mechanical processes of outer wedges of twenty-three subduction zones. The surface slope of these wedges is generally too high to be explained by the classical critical taper theory but can be explained by the dynamic Coulomb wedge theory. Part II: A giant earthquake produces coseismic seaward motion of the upper plate and induces shear stresses in the upper mantle. After the earthquake, the fault is re-locked, causing the upper plate to move slowly landward. However, parts of the fault will undergo continuous aseismic afterslip for a short duration, causing areas surrounding the rupture zone to move seaward. At the same time, the viscoelastic relaxation of the earthquake-induced stresses in the upper mantle causes prolonged seaward motion of areas farther landward including the forearc and the back arc. The postseismic and interseismic crustal deformation depends on the interplay of these three primary processes. I have used three-dimensional viscoelastic finite element models to study the contemporary crustal deformation of three margins, Sumatra, Chile, and Cascadia, that are presently at different stages of their great earthquake cycles. Model results indicate that the earthquake cycle deformation of different margins is governed by a common physical process. The afterslip of the fault must be at work immediately after the earthquake. The model of the 2004 Sumatra earthquake constrains the characteristic time of the afterslip to be 1.25 yr. With the incorporation of the transient rheology, the model well explains the near-field and far-field postseismic deformation within a few years after the 2004 Sumatra event. The steady-state viscosity of the continental upper mantle is determined to be 10^19 Pa S, two orders of magnitude smaller than that of the global value obtained through global postglacial rebound models.


Stress Modulation of Earthquakes

Stress Modulation of Earthquakes
Author: Christopher W. Johnson
Publisher:
Total Pages: 157
Release: 2017
Genre:
ISBN:

Download Stress Modulation of Earthquakes Book in PDF, ePub and Kindle

Decomposing fault mechanical processes advances our understanding of active fault systems and properties of the lithosphere, thereby increasing the effectiveness of seismic hazard assessment and preventative measures implemented in urban centers. Along plate boundaries earthquakes are inevitable as tectonic forces reshape the Earth's surface. Earthquakes, faulting, and surface displacements are related systems that require multidisciplinary approaches to characterize deformation in the lithosphere. Modern geodetic instrumentation can resolve displacements to millimeter precision and provide valuable insight into secular deformation in near real-time. The expansion of permanent seismic networks as well as temporary deployments allow unprecedented detection of microseismic events that image fault interfaces and fracture networks in the crust. The research presented in this dissertation is at the intersection of seismology and geodesy to study the Earth's response to transient deformation and explores research questions focusing on earthquake triggering, induced seismicity, and seasonal loading while utilizing seismic data, geodetic data, and modeling tools. The focus is to quantify stress changes in the crust, explore seismicity rate variations and migration patterns, and model crustal deformation in order to characterize the evolving state of stress on faults and the migration of fluids in the crust. The collection of problems investigated all investigate the question: Why do earthquakes nucleate following a low magnitude stress perturbation? Answers to this question are fundamental to understanding the time dependent failure processes of the lithosphere. Dynamic triggering is the interaction of faults and triggering of earthquakes represents stress transferring from one system to another, at both local and remote distances [Freed, 2005]. The passage of teleseismic surface waves from the largest earthquakes produce dynamic stress fields and provides a natural laboratory to explore the causal relationship between low-amplitude stress changes and dynamically triggered events. Interestingly, observations of dynamically triggered M≥5.5 earthquakes are absent in the seismic records [Johnson et al., 2015; Parsons and Velasco, 2011], which invokes questions regarding whether or not large magnitude events can be dynamically triggered. Emerging results in the literature indicate undocumented M≥5.5 events at near to intermediate distances are dynamically triggered during the passage of surface waves but are undetected by automated networks [Fan and Shearer, 2016]. This raises new questions about the amplitude and duration of dynamic stressing for large magnitude events. I used 35-years of global seismicity and find that large event rate increases only occur following a delay from the transient load, suggesting aseismic processes are associated with large magnitude triggered events. To extend this finding I investigated three cases of large magnitude delayed dynamic triggering following the M8.6 2012 Indian Ocean earthquake [Pollitz et al., 2012] by producing microseismicity catalogs and modeling the transient stresses. The results indicate immediate triggering of microseismic events that hours later culminate into a large magnitude event and support the notion that large magnitude events are triggerable by transient loading, but seismic and aseismic processes (e.g. induced creep or fluid mobilization) are contributing to the nucleation process. Open questions remain concerning the source of a nucleation delay period following a stress perturbation that require both geodetic and seismic observations to constrain the source of delayed dynamic triggering and possibly provide insight into a precursory nucleation phase Induced seismicity has gained much attention in the past 5 years as earthquake rates in regions of low tectonic strain accumulation accelerate to unprecedented levels [Ellsworth, 2013]. The source of the seismicity is attributed to shallow fluid injection associated with energy production. As hydrocarbon extraction continues to increase in the U.S. the deformation and induced seismicity from wastewater injection is providing new avenues to explore crustal properties. The large magnitude events associated with regions of high rate injection support the notion that the crust is critically stressed. Seismic data in these areas provides the opportunity to delineate fault structures in the crust using precise earthquake locations. To augment the studies of transient loading cycles I investigated induced seismicity at The Geysers geothermal field in northern California. Using high-resolution hypocenter data I implement an epidemic type aftershock sequence (ETAS) model to develop seismicity rate time series in the active geothermal field and characterize the migration of fluids from high volume water injection. Subtle stress changes induced by thermo- and poroelastic strains trigger seismicity for ~5 months after peak injection at depths ~3 km below the main injection interval. This suggests vertical migration paths are maintained in the geothermal field that allows fluid propagation on annual time scales. Fully describing the migration pattern of fluids in the crust and the associated stresses are applicable to tectonic related faulting and triggered seismic activity. Seasonal hydrological loading is a source of annual periodic transient deformation that is ideal for investigating the modulation of seismicity. The initial step in exploring the modulation of seismicity is to validate that a significant annual period does exist in California earthquake records. The periodicity results [Dutilleul et al., 2015] motivate continued investigation of seismically active regions that experience significant seasonal mass loading, i.e. high precipitation and snowfall rates, to quantify the magnitude of seasonal stress changes and possible correlation with seismicity modulation. The implication of this research addresses questions concerning the strength and state of stress on faults. High-resolution water storage time series throughout California are developed using continuous GPS records. The results allow an estimation of the stress changes induced by hydrological loading, which is combined with a detailed focal mechanism analysis to characterize the modulation of seismicity. The hydrologic loading is augmented with the contribution of additional deformation sources (e.g. tidal, atmosphere, and temperature) and find that annual stress changes of ~5 kPa are modulating seismicity, most notably on dip-slip structures. These observations suggest that mechanical differences exist between the vertically dipping strike-slip faults and the shallowly dipping oblique structures in California. When comparing all the annual loading cycles it is evident that future studies incorporate all the sources of solid Earth deformation to fully describe the stresses realized on fault systems that respond to seasonal loads.