Seismic Response Analysis Of Steel Plate Shear Wall Systems Using Detailed And Simplified Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Seismic Response Analysis Of Steel Plate Shear Wall Systems Using Detailed And Simplified Models PDF full book. Access full book title Seismic Response Analysis Of Steel Plate Shear Wall Systems Using Detailed And Simplified Models.

Seismic Performance of Steel Plate Shear Walls Using Nonlinear Static Analysis

Seismic Performance of Steel Plate Shear Walls Using Nonlinear Static Analysis
Author: MOON MOON DHAR
Publisher:
Total Pages: 147
Release: 2015
Genre:
ISBN:

Download Seismic Performance of Steel Plate Shear Walls Using Nonlinear Static Analysis Book in PDF, ePub and Kindle

Unstiffened steel plate shear wall (SPSW) is considered as a primary lateral load resisting system due to its significant post-buckling strength, high ductility, stable hysteretic behaviors and robust initial stiffness. Nonlinear seismic analysis can accurately estimate structural responses, however, the method is very time consuming and may not be suitable for regular engineering practice. On the other hand, traditional pushover analysis method does not consider contributions of higher modes to the structural responses and thus, often do not provide good estimation of seismic responses for taller buildings. Capacity-Spectrum Method (CSM) and modal pushover analysis (MPA) are two simple nonlinear static methods that have been proposed and recently used for seismic performance evaluation of few lateral load-resisting systems. This research further examines the applicability of CSM and MPA methods to assess seismic performance of steel plate shear walls. A nonlinear finite element model was developed and validated with experimental studies. Three different SPSWs (4-, 8-, and 15-storey) designed according to capacity design approach were analysed by subjecting the steel shear walls under artificial and real ground motions for Vancouver. The CSM and MPA procedures were applied to analyse the selected SPSWs and the results were compared with more accurate nonlinear seismic analysis results. It is observed that both CSM and MPA procedures can reasonably predict the peak roof displacements for low-rise SPSW buildings. In addition, MPA procedure, which includes contributions of higher modes when estimating seismic demands of buildings, provides better predictions of critical seismic response parameters for taller SPSWs.


Seismic Performance of Perforated Steel Plate Shear Walls Designed According to Canadian Seismic Provisions

Seismic Performance of Perforated Steel Plate Shear Walls Designed According to Canadian Seismic Provisions
Author: Kallol Barua
Publisher:
Total Pages: 166
Release: 2016
Genre:
ISBN:

Download Seismic Performance of Perforated Steel Plate Shear Walls Designed According to Canadian Seismic Provisions Book in PDF, ePub and Kindle

Perforated Steel Plate Shear Wall (P-SPSW) is a relatively new lateral load resisting system used for resisting wind and earthquake loads. Current North American standards have recently adopted this new lateral load resisting system and proposed guidelines for the design of P-SPSWs. Research on P-SPSW is in the initial stage and to the best of this researcher’s knowledge, no seismic performance of code designed P-SPSWs has been studied yet. The main objective of this study was to evaluate the seismic performance of code designed P-SPSWs. Three multi-storey (4-, 8-, and 12-storey) P-SPSWs were designed according to the seismic provisions in NBCC 2010 and CSA/CAN S16-09. Nonlinear time history (NTH) analysis was conducted using detailed finite element (FE) modeling techniques. The finite element (FE) model developed was validated with two experiments results for quasi- static monotonic and cyclic analysis. Excellent correlation was found between detailed FE analysis and tests result. For seismic analysis a series of ten ground motion data were chosen which were compatible with Vancouver response spectrum. All the perforated shear walls exhibited excellent seismic behavior including high stiffness, stable ductility, and good energy dissipation during nonlinear time history (NTH) analysis. It was observed from the seismic analysis that proposed code equation provided a good estimation of the shear strength of the perforated plate when the plate was fully yielded. Thus, it can be concluded that recommended equation of CSA/CAN S16-09 is conservative to select the infill plate thickness of perforated steel plate shear wall. The N2 method has been used as an easy means of seismic demand evaluation compared to nonlinear time history analysis. The applicability of the N2 method for seismic demand assessment of P-SPSWs is investigated in this research. Results from N2 method was compared with the more accurate NTH analysis results. It was observed that the N2 method predicted seismic response parameters such as roof displacement reasonably accurately for 4-and 8-storey P-SPSW. For 12-storey P-SPSW N2 method slightly overestimated the roof displacement. The applicability of the modified strip model (MSM) was also evaluated in this research for unstiffened P-SPSW. After validating two experiments, the model was used for the three selected P-SPSWs. Monotonic pushover analysis results were compared with detailed FE analysis results. It was observed that the modified strip model efficiently captures the inelastic behavior of multi-storey unstiffened P-SPSWs with adequate accuracy. The ultimate strength was predicted well, and the initial stiffness was slightly underestimated.


Seismic Behavior and Design of Steel Plate Shear Walls with Beam-connected Plates

Seismic Behavior and Design of Steel Plate Shear Walls with Beam-connected Plates
Author: Ahmet Yigit Ozcelik
Publisher:
Total Pages: 356
Release: 2017
Genre:
ISBN:

Download Seismic Behavior and Design of Steel Plate Shear Walls with Beam-connected Plates Book in PDF, ePub and Kindle

Steel plate shear walls (SPSW) are a reliable lateral force-resisting system with high ductility, stable hysteretic response, and high lateral stiffness. The main lateral force-resisting elements of a SPSW are thin steel infill plates (web plates) that are connected to columns and beams on four edges. Due to a mechanism called tension field action, web plates pull in columns and induce significant flexural demands in columns when the system undergoes a lateral sway. Steel plate shear walls with beam-connected web plates (B-SPSW) are an alternative configuration to conventional SPSWs where columns are detached from web plates to eliminate column flexural demands resulting from tension field action. Due to the difference in the boundary conditions of web plates, the behavior of B-SPSWs is different than conventional SPSWs. A three-phase numerical study has been undertaken to investigate the seismic behavior of B-SPSWs. In the first phase, a parametric study was conducted to characterize beam-connected web plate behavior using validated finite element models and a simplified model was proposed to simulate cyclic behavior of beam-connected web plates under lateral loading. In the second phase, web plate and beam design equations were proposed and eighteen B-SPSWs possessing different geometric characteristics were designed for a low-seismic site using these equations. The B-SPSWs were subjected to ground motions to assess their seismic performance. The results of the proof-of-concept study indicated that B-SPSWs would be an attractive alternative lateral force-resisting system for low- and moderate-seismic regions. The third phase focused on the behavior of B-SPSW columns. The columns of the B-SPSWs considered in the second phase of the study were remodeled adopting more sophisticated modeling techniques to study the column behavior in detail. The results indicated that column flexural demands resulting from column rotations at floor levels due to differential interstory drifts caused column stability problems for some cases even if the axial load demands were below the design axial loads. Then a parametric study was conducted on isolated columns to quantify the effect of these flexural demands on column buckling strength. An empirical equation was proposed to estimate the reduction in the column buckling strength due to the moment demands associated with differential lateral drifts that are not considered in the design stage.


Experimental, Numerical, and Analytical Studies on the Seismic Response of Steel-plate Concrete (SC) Composite Shear Walls

Experimental, Numerical, and Analytical Studies on the Seismic Response of Steel-plate Concrete (SC) Composite Shear Walls
Author: Siamak Epackachi
Publisher:
Total Pages: 25
Release: 2014
Genre:
ISBN:

Download Experimental, Numerical, and Analytical Studies on the Seismic Response of Steel-plate Concrete (SC) Composite Shear Walls Book in PDF, ePub and Kindle

The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were developed, validated, and implemented in MATLAB. Analytical models were proposed for monotonic and cyclic simulations of the in-plane response of flexure- and flexure-shear-critical SC wall piers. The model for cyclic analysis was developed by modifying the Ibarra-Krawinler Pinching (IKP) model. The analytical models were verified using the results of the parametric study and validated using the test data.


Steel Plate Shear Walls for Low and Moderate Seismic Regions and Industrial Plants

Steel Plate Shear Walls for Low and Moderate Seismic Regions and Industrial Plants
Author: Hassan Moghimi
Publisher:
Total Pages: 288
Release: 2013
Genre: Earthquake resistant design
ISBN:

Download Steel Plate Shear Walls for Low and Moderate Seismic Regions and Industrial Plants Book in PDF, ePub and Kindle

Steel plate shear walls have traditionally been perceived to be suitable mainly for high seismic regions due to their great ductility and cyclic energy dissipation capacity. Therefore, design and detailing requirements have become increasingly onerous in an attempt to maximize their performance, effectively making the system uneconomical in other regions. Developing applications specifically for low and moderate seismic regions has largely been neglected by researchers. Moreover, despite unique advantages of the system in terms of inherent high ductility and redundancy, its performance under accidental blast has not been investigated systematically. The objective of this research is to examine these neglected areas. Different practical details are investigated to reduce the force demands on the boundary frame of the wall system and ultimately reduce the construction cost in low seismic regions. A seismic zone-independent performance-based design method is developed and the efficiency of each detail is studied using comprehensive finite element simulations. It was found that suitable details for low seismic applications include simple beam-to-column connections, modular construction, and adopting a more liberal design philosophy for the columns. A large-scale two-story steel plate shear wall test specimen was designed based on the efficient details for the limited-ductility performance application and tested under gravity load concurrent with cyclic lateral loads. The test results are used to assess its overall seismic performance and verify the efficiency of the proposed design philosophy and selected details. The specimen, overall and in its details, showed excellent performance with high ductility. The nature of the infill plate forces applied to the boundary frame members is discussed in detail, and the reasons for achieving conservative column design forces in current capacity design methods are described. A performance-based capacity design method for the wall system is proposed and the target performance level is defined in terms of ductility and redundancy. Based on new and previous experimental data, a holistic and sound set of principles for capacity design of steel plate shear walls for three different performance levels--including limited-ductility, moderately ductile, and ductile--along with their design provisions, are developed. The method is applied to design examples and verified against experimental results. Another objective of this research was to explore the possible application of steel plate shear walls as a protective structure in industrial plants. Advanced and comprehensive numerical models that take into account important issues affecting the blast design are developed. The blast performance of the system is investigated by means of iso-response curves for both in-plane and out-of-plane blast orientations and different response parameters. An analytical normalization method is proposed that produces dimensionless iso-response curves.


Seismic Performance of Steel Shear Walls with Rectangular Openings

Seismic Performance of Steel Shear Walls with Rectangular Openings
Author: Nozhat Sadat Ghazi Sharyatpanahi
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

Download Seismic Performance of Steel Shear Walls with Rectangular Openings Book in PDF, ePub and Kindle

Unstiffened Steel Plate Shear Wall (SPSW) has widely been accepted as an effective lateral load resisting system for resisting wind and earthquake loads. This system has significant post-buckling strength, high ductility, stable hysteretic behaviors and robust initial stiffness. Composite Plate Shear Wall (C-PSW) is also a new form of steel shear wall which has a steel plate and a layer of reinforced concrete (RC) at one or both sides of the steel plate. The steel plate and the concrete layer are connected with shear studs to have a complete composite behavior. C-PSW has some advantages over SPSW such as protection against fire and blast loading. In addition, the presence of the concrete panel can prevent buckling of the steel plate and thereby increase the stiffness, shear strength, and energy dissipation capacity of the C-PSW system in comparison to conventional SPSW system. Often, SPSWs and C-PSWs need to accommodate large door or window size openings in the infill plates, such as when SPSWs/C-PSWs are used in the building central cores around the elevators. Current AISC design standard recommends use of horizontal and vertical local boundary elements (LBE), in the form of stiffeners, around these large rectangular openings to anchor the tension field developed in the infill plate. Research on SPSW with stiffened large openings like door and window sized openings is limited. Also research on C-PSWs with large openings is still in the initial stage and a significant amount of research is needed before it can be adopted by the Canadian steel design code. This study presents seismic performance of SPSWs and C-PSWs with door size openings in the web plate. Nonlinear FE models were developed in ABAQUS for SPSW and C-PSW with door size openings. The FE models include both material and geometric nonlinearities. The proposed FE model was validated against available experimental data. The study describes details of the validation of the finite element model. Two multi-storey (3- and 5-storey) SPSWs and C-PSWs were designed following the capacity design concept and the guidelines of current AISC seismic design standard. The performance of selected SPSWs and C-PSWs were investigated through conducting a series of time history analysis using a suite of 8 ground motions that are developed for western Canada and are compatible with Vancouver design response spectrum. Nonlinear seismic analysis shows that both SPSWs and C-PSWs with rectangular openings exhibit excellent seismic performance with high ductility and strength when subjected to strong ground motions. Maximum contribution of various structural components (i.e., infill plate and boundary members) in resisting applied lateral loads are calculated from seismic analysis and presented in the study. The maximum interstorey drift is found to be within the code limit for both systems under all ground motions. It is observed that the designed stiffeners around the openings are very effective in limiting the in-plane and out-of-plane deformations around the rectangular openings, especially in the SPSW system and the presence of these stiffeners do not alter the recommended yielding sequence of the system. In addition, it is observed that current AISC requirement to attach horizontal and vertical LBE around rectangular opening of C-PSW is conservative and can be relaxed if the infill plate is connected with the concrete panel with adequate shear connectors.


Collapse Assessment of Steel Plate Shear Walls

Collapse Assessment of Steel Plate Shear Walls
Author: Armin Farahbakhshtooli
Publisher:
Total Pages: 0
Release: 2020
Genre:
ISBN:

Download Collapse Assessment of Steel Plate Shear Walls Book in PDF, ePub and Kindle

Steel Plate Shear Walls (SPSWs) are commonly used in low- to high-rise buildings as the lateral load resisting system. Most commonly used SPSWs in multi-storey buildings are unstiffened, stiffened, and composite SPSWs. Unlike unstiffened SPSWs, very little research has been conducted to assess the seismic performance of stiffened and composite SPSWs. The stiffened and composite SPSWs have been proved to provide higher level of ductility due to the fact that they can prevent the buckling of thin infill plate, while increasing the initial stiffness and energy absorbance capacity of the whole system. The objective of current study is to assess the seismic performance and collapse capacity of stiffened and composite SPSWs. In the current research work, two types of composite SPSWs (traditional and innovative) are considered. In innovative composite SPSW, there is a small gap between reinforced concrete (RC) panel and surrounding boundary members, while in traditional one, RC panel is in direct contact with surrounding boundary members. In the first step, a reliable macro-modelling approach was developed for each type of SPSWs considered in this study. The validity of the proposed macro models was then investigated against available experimental data. Several multi-storey stiffened and composite SPSWs were designed according to CSA S16-14 and NBC 2015. To estimate the seismic response parameters (i.e., ductility-related force modification factor and overstrength-related force modification factor) for designing stiffened and composite SPSWs, nonlinear static pushover analysis and incremental dynamic analysis (IDA) have been performed on all archetypes using OpenSees following the procedure presented in FEMA P695. Quantification of seismic parameters of stiffened and composite SPSWs, including period-based ductility, overstrength, and collapse margin ratio has been conducted to better understand the seismic response and collapse capacity of the SPSW system. The results showed that all archetypes provide significant safety margin against collapse (large collapse margin ratio values) and satisfy the requirements of FEMA P695. Seismic response sensitivity of traditional composite SPSWs to the variation of post-yielding parameters (i.e., ductility capacity and post-cap stiffness ratio) in infill plate and variation of post-cracking parameters (i.e., shear strain correspond to maximum shear stress, yielding shear strain, and residual stress) in shear behavior adopted for RC panel are further investigated. The study showed that the capacity of composite SPSW is more sensitive to the variation of post-yielding parameters of the infill plate, while the variation of post-cracking parameters of the concrete panel has a minor effect on overall performance of the composite SPSW system. Steel plate shear wall with regularly spaced circular perforations has recently been developed. While the current edition of AISC 341-16 and CSA S16-14 have adopted perforated SPSW in their design standards, no simple numerical model is currently available for this SPSW system. In this study, a reliable macro-modelling approach was developed for regularly spaced circular perforation and was validated against available experimental results. Nonlinear seismic response of perforated SPSWs was studied through conducting a series of time history and incremental dynamic analysis to better understand the overall performance of the system when subjected to strong ground motions.


Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates

Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates
Author: Tadeh Zirakian
Publisher:
Total Pages: 233
Release: 2013
Genre:
ISBN:

Download Seismic Performance and Design of Steel Plate Shear Walls with Low Yield Point Steel Infill Plates Book in PDF, ePub and Kindle

Steel plate shear walls (SPSWs) have been frequently used as the primary or part of the primary lateral force-resisting system in design of low-, medium-, and high-rise buildings. Their application has been based on two different design philosophies as well as detailing strategies. Stiffened and/or stocky-web SPSWs with improved buckling stability and high seismic performance have been mostly used in Japan, which is one of the pioneering countries in design and application of these systems. Unstiffened and slender-web SPSWs with relatively lower buckling and energy dissipation capacities, on the other hand, have been deemed as a rather economical alternative and accordingly widely used in the United States and Canada. Development and use of low yield point (LYP) steel with considerably low yield stress and high elongation capacity provides the possibility to combine merits of these two distinctive design strategies, and consequently result in rather cost-effective and high-performing SPSW systems. Although some reported studies have demonstrated the advantages of LYP steel shear walls, various aspects of structural and seismic characteristics of these systems have not been investigated thoroughly. In particular, the linkage between structural specifications and seismic performance and pathway to performance-based design of these systems are largely undeveloped. Hence, systematic investigations are required to facilitate the seismic design and prevalent application of such promising lateral force-resisting and energy dissipating systems. Although some reported studies have demonstrated the advantages of LYP steel shear walls, various aspects of structural and seismic characteristics of these systems have not been investigated thoroughly. In particular, the linkage between structural specifications and seismic performance and pathway to performance-based design of these systems are largely undeveloped. Hence, systematic investigations are required to facilitate the seismic design and prevalent application of such promising lateral force-resisting and energy dissipating systems. The main objectives of this research are to evaluate the structural behavior and seismic performance of unstiffened LYP steel shear wall systems in a rather comprehensive manner. To achieve these objectives, element-level investigations on steel plates, component-level investigations on SPSW panels, and system-level investigations on multi-story steel frame-shear wall structures are performed in a hierarchical and systematic manner. Through detailed element- and component-level investigations, it is shown that employment of LYP steel infill plates in SPSW systems facilitates the design and effectively improves the buckling stability, serviceability, and energy absorption capacity of such lateral force-resisting systems. Some practical design tools and recommendations are also provided through analytical and numerical studies. In system-level investigations, the effectiveness of use of LYP steel material in design and retrofit construction is demonstrated through nonlinear time-history analysis as well as seismic response and performance assessment of multi-story structures subjected to earthquake ground motions representing various hazard levels. Ultimately, the fragility methodology is utilized by developing appropriate fragility functions for probabilistic seismic performance and vulnerability assessment of structures designed and retrofitted with conventional and LYP steel infill plates. The results of this study are indicative of relatively lower damage probability and superior seismic performance of LYP steel shear wall systems.